• Title/Summary/Keyword: 연료링

Search Result 218, Processing Time 0.023 seconds

A Study on CDM Possibility Assessment of Transport Sector (교통부문 청정개발체제(CDM) 사업화 가능성 평가)

  • Park, Jin Young;Kim, DongJun;Oh, Seung Hwoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.175-184
    • /
    • 2011
  • Transport sector takes charge of about 20 percent of energy consumption and GHG(Green House Gas) emission in Korea. One of the efficient strategy of reducing GHG is introducing CDM(Clean Development Mechanism), which is one of GHG reduction systems in Kyoto Protocol. Nowadays many tries have done to regist transport policies as CDM in transport sector, however, a lot of things should be investigated to regist CDM in advance. The aim of this paper is assessment of CDM possibility in transport sector. First of all, we review steps and criteria to CDM registration, and select 4 CDM possibility assessment index in transport sector: as follows additionality, methodology, emission calculation, and monitoring. Also, we analyze registed projects and methodologies in transport sector. To assess CDM possibility in transport sector, quantitative and qualitative assessments are carried out in this study. 18 transport policies are categorized as 4 groups and possibility of 18 transport policies are examined. Several policies can reduce GHG, however, they are not fit to regist as a CDM. On the contrary many transport policies have possibility to regist. In addition, we have done questionnaire survey, 'fuel change' policies have high possibility to CDM. However transport policies related to haman activity, like as TOD, have lower possibility. As a result, we can find that enough CDM possibility assessment should be carried out before CDM registration in transport sector.

The study on bioaccumulation of heavy metals in the cultured Pacific oyster, Crassostrea gigas, along the coast of Tongyeong, Korea (통영연안 해역의 양식 참굴 (Crassostrea gigas) 의 중금속 농축에 관한 연구)

  • Cho, Sang-Man;Kim, Yeong-Hwan;Jeong, Woo-Geon
    • The Korean Journal of Malacology
    • /
    • v.25 no.3
    • /
    • pp.213-222
    • /
    • 2009
  • In order to investigate contamination of heavy metal in seawater and cultured oyster, samples were collected November 2003 to July 2004 from 12 sites (13 sites for seawater) along the coast of Tongyeong, Korea. The mean concentrations of metal in oyster tissues were as follows: 0.09 (0.01-0.3) ${\mu}g/l$ for Cd, 0.47 (0.01-1.4) ${\mu}g/l$ for Cr, 0.59 (0.2-2.3) ${\mu}g/l$ for Ni, 1.02 (0.1-4.2) ${\mu}g/l$ for Pb and 0.48 (0.01-3.9) ${\mu}g/l$ for Hg in the seawater, whereas 2.45 (0-5.47) mg/kgDW for Cd, 3.63 (0.10-12.91) mg/kgDW for Cr, 3.2 (0.01-15.73) mg/kgDW for Ni, 3.51 (0.01-6.47) mg/kgDW for Pb and 0.39 (0.004-0.74) mg/kgDW for Hg, respectively. Most metal concentration values were below the permissible range for the related regulations. Mean bioconcentration factors (BCF) for each metal were as follows: 38,964 (1,771-207, 171) for Cd, 9,583 (1,231-80, 162) for Cr, 191 (3-20, 980) for Ni, 1,416 (245-5, 207) for Pb and 180 (5-716) for Hg, respectively. The BCF values from this study corresponded to the transitional phase from the pristine to the contaminated waters. Notably, Cd showed the highest BCF, which suggest that the Pacific oyster could be utilized as a useful biomarker for Cd contamination in sea water. The multidimensional scaling analysis suggested that the metal contaminants are mainly originated from combustion of fossil fuel and accumulated to oyster through food web.

  • PDF

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Design and Operation Guideline (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(III): 도시가스 및 수송용 - 기술지침(안) 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.67-73
    • /
    • 2019
  • In this study, to optimize the production and utilization of biogas for organic waste resources, the precision monitoring of on-site facilities and the energy balance by facility were analyzed, and the solutions for field problems were investigated, and the design and operation guidelines for pretreatment facilities and generators were presented. Gas pre-treatment is required to solve frequent failures and efficiency degradation in operation of high quality refining facilities, and processing processes such as desulfurization, dehumidification, deoxidization, dust treatment, volatile organic compounds, etc. Since these processes are substances that are also eliminated from the high-quality process, quantitative guidelines are not presented in the gas pretreatment process, but are suggested to operate during the processing process as a qualitative guideline. In particular, dust, siloxane, and volatile organic compounds are the main cause of frequent failure of high-quality processes if they are not removed from the gas pretreatment process. Design of the biogas high-quality process. The operation guidelines provide quality standards [Methane content (including propane) of 95% or more] with 90% or more utilization of the total gas generation, two systems, and a margin of 10% or more. It also proposed installing gas equalization tank, installing thermal automatic control system for controlling equalization of auxiliary fuel, installing dehumidification device at the back of high quality for removing moisture generated in the process of gas compression, installing heat-resisting facilities to prevent freezing of facilities in winter and reducing efficiency, and installing membrane facilities in particular.

Crack Propagation Analysis for IMO Type-B Independent Tank with Liquefied Natural Gas Carrier (LNG 운반선에 적용된 독립형 탱크의 균열 진전 해석에 관한 연구)

  • Kim, Beom-il;Shafiqul, Islam MD
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.529-537
    • /
    • 2021
  • Membrane-type hull and cargo holds have been designed and built for large ship. However, there is a growing interest in applying the same technology to small and medium-sized Liquefied natural gas(LNG) carriers to meet the recent increase in demand for LNG as an ecofriendly fuel and for expanding LNG bunkering infrastructure. The purpose of this study is to apply the IMO Type-B tank to small and medium-sized LNG carriers and verify the safety and suitability of the design. Fatigue crack propagation analysis was performed to install a partial second drip tray installed at the lower part of the LNG cargo tank by calculating the amount of leaked gas in the support structure supporting the cargo tank. First, a program for fatigue crack propagation analysis was developed, in which Paris' law and British Standard 7910 (BS 79110) were applied based on the International Code for the Construction of Equipment and Ships Carrying Liquefied Gases in Bulk, an international standard for LNG carriers. In addition, a surface crack propagation analysis was performed. Next, a methodology for assuming the initial through-crack size was developed to determine the size of the partial second barrier. The analysis was performed for 15 days, which is a possible return time after cracks are detected. Finally, the safety and suitability of the IMO Type-B for LNG cargo tanks required by international regulations were verified. For the accurate analysis of fatigue crack propagation, it is necessary to develop and verify the analysis procedure based on direct analysis and international regulations.

The Present State of Marine Oil Spills and the Enhancement Plans of National Oil Spill Response Capability in Vietnam - Through the Comparison of Statistics and OSR System between Vietnam and Republic of Korea - (베트남의 해양기름유출 현황과 국가대응역량 증강 방안 - 통계자료와 유출유 방제시스템에 대한 베트남과 한국 간의 비교를 통하여 -)

  • Phan, Van Hung;Kim, Kwang-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.690-698
    • /
    • 2017
  • Vietnam is a marine nation with more than 3,444 km of shorelines, thousands of islands, and 2,360 rivers and canals of over 42,000 km long. As the frequency and the volume of oil transportation by ships increase, the possibility of oil spill incidents becomes higher than ever. Fuel oil and cargo oil spills at sea have widespread impact and long-term consequences on marine ecosystems, coastal resources and human health as well as socio-economy. This study is to show not only the present state of marine oil spills in Vietnam such as the number and the volume of oil spills for two decades, and an overall about Vietnamese national response system like national framework for Oil Spill Response (OSR), etc. but also to present the recommendations for enhancing national capability in response to oil spill incidents in Vietnam, especially, with a comparison of national OSR systems between Vietnam and South Korea. As the result, the number and the volume of marine oil spills in Vietnam showed an upward trend as opposed to a downward trend in South Korea. This means that Vietnam has the possibility of oil spills in coastal waters. Therefore, three main recommendations for the enhancement of national OSR capability in Vietnam are proposed as follows: (1) the development of alternative plan for reenforcing national OSR system involving legal system for preparedness and response to oil spill pollution such as the acceptance and implementation of OPRC Convention as well as the establishment of national fund compensating for the damage and loss caused by oil pollution; (2) the enhancement of a consistent reporting, alerting and monitoring system; and (3) the development of training and exercise programs with standard contents of educational courses.

A study on the introduction of organic waste-to-energy incentive system(I): Precise monitoring of biogasification (유기성폐자원에너지 인센티브제도 도입방안 연구(I): 바이오가스화 정밀모니터링)

  • Kwon, Jun-Hwa;Moon, Hee-Sung;Lee, Won-Seok;Lee, Dong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.67-76
    • /
    • 2021
  • Biogasification is a technology that produces environmentally friendly fuel using methane gas generated in the process of stably decomposing and processing organic waste. Biogasification is the most used method for energy conversion of organic waste with high moisture content, and is a useful method for organic waste treatment following the prohibition of direct landfill (2005) and marine dumping (2013). Due to African Swine Fever (ASF), which recently occurred in Korea, recycling of wet feed is prohibited, and consumers such as dry feed and compost are negatively recognized, making it difficult to treat food waste. Accordingly, biogasification is attracting more attention for the treatment and recycling of food waste. Korea's energy consumption amounted to 268.41 106toe, ranking 9th in the world. However, it is an energy-poor country that depends on foreign imports for about 95.8% of its energy supply. Therefore, in Korea, the Renewable Energy Portfolio Standard (RPS) is being introduced. The domestic RPS system sets the weight of the new and renewable energy certificate (REC, Renewable energy certificate) of waste energy lower than that of other renewable energy. Therefore, an additional incentive system is required for the activation of waste-to-energy. In this study, the operation of an anaerobic digester that treats food waste, food waste Leachate and various organic wastes was confirmed. It was intended to be used as basic data for preparing the waste-to-energy incentive system through precise monitoring for a certain period of time. Four sites that produce biogas from organic waste and use them for power generation and heavy gas were selected as target facilities, and field surveys and sampling were conducted. Basic properties analysis was performed on the influent sample of organic waste and the effluent sample according to the treatment process. As a result of the analysis of the properties, the total solids of the digester influent was an average of 12.11%, and the volatile solids of the total solids were confirmed to be 85.86%. BOD and CODcr removal rates were 60.8% and 64.8%. The volatile fatty acids in the influent averaged 55,716 mg/L. It can be confirmed that most of the volatile fatty acids were decomposed and removed with an average reduction rate of 92.3% after anaerobic digestion.

National Management Measures for Reducing Air Pollutant Emissions from Vessels Focusing on KCG Services (선박 대기오염물질 배출 현황 및 저감을 위한 국가 관리 대책 연구: 해양경찰 업무를 중심으로)

  • Lee, Seung-Hwan;Kang, Byoung-Yong;Jeong, Bong-Hun;Gu, Ja-Yeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.163-174
    • /
    • 2020
  • Particulate matter levels are rapidly increasing daily, and this can affect human health. Therefore, air pollutant emissions from sea vessels require management. This study evaluates the status of air pollutants, focusing on air pollutant emissions from the vessels of the Korea Coast Guard (KCG), and proposes national management measures to reduce emissions. According to a report recently released (2018) by the National Institute of Environmental Research (NIER), emissions from vessels constituted 6.4 % of the total domestic emissions, including 13.1 % NOx, 10.9 % SOx, and 9.6 % particulate matter (PM10/PM2.5). Among the rates of pollutant emission from vessels, the emission rates of domestic and overseas cargo vessels were the highest (50.6 %); the ratio of fishing boats was 42.6 %. With respect to jurisdictional sea area, 44.1 % of the emissions are from the south sea, including the Busan and Ulsan ports, and 24.8 % of the emissions are from the west sea, including the Gwangyang and Yeosu ports. The KCG inspects boarding lines to manage emission conditions and regulate air pollutant emissions, but it takes time and effort to operate various discharge devices and measure fuel oil standards. In addition, owing to busy ship schedules, inspection documents are limited in terms of management. Therefore, to reduce the air pollutant emissions of such vessels, regulations will be strengthened to check for air pollutants, and a monitoring system based on actual field data using KCG patrol ships will be established, for each sea area, to manage the emissions of such vessels. Furthermore, there is a need for technological development and institutional support for the introduction of environmentally friendly vessels.

Estimation of TROPOMI-derived Ground-level SO2 Concentrations Using Machine Learning Over East Asia (기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.275-290
    • /
    • 2021
  • Sulfur dioxide (SO2) in the atmosphere is mainly generated from anthropogenic emission sources. It forms ultra-fine particulate matter through chemical reaction and has harmful effect on both the environment and human health. In particular, ground-level SO2 concentrations are closely related to human activities. Satellite observations such as TROPOMI (TROPOspheric Monitoring Instrument)-derived column density data can provide spatially continuous monitoring of ground-level SO2 concentrations. This study aims to propose a 2-step residual corrected model to estimate ground-level SO2 concentrations through the synergistic use of satellite data and numerical model output. Random forest machine learning was adopted in the 2-step residual corrected model. The proposed model was evaluated through three cross-validations (i.e., random, spatial and temporal). The results showed that the model produced slopes of 1.14-1.25, R values of 0.55-0.65, and relative root-mean-square-error of 58-63%, which were improved by 10% for slopes and 3% for R and rRMSE when compared to the model without residual correction. The model performance by country was slightly reduced in Japan, often resulting in overestimation, where the sample size was small, and the concentration level was relatively low. The spatial and temporal distributions of SO2 produced by the model agreed with those of the in-situ measurements, especially over Yangtze River Delta in China and Seoul Metropolitan Area in South Korea, which are highly dependent on the characteristics of anthropogenic emission sources. The model proposed in this study can be used for long-term monitoring of ground-level SO2 concentrations on both the spatial and temporal domains.