• Title/Summary/Keyword: 연기농도

Search Result 162, Processing Time 0.032 seconds

Assessment of the Usefulness of the Water Spray for Fire Extinguishing in Case of Fire in Tunnels (터널 화재시 수분무 소화설비의 효용성 평가)

  • Rie, Dong-Ho;Lim, Kyung-Bum;Yoo, Ji-Oh
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.55-60
    • /
    • 2008
  • In this study, we conducted an FDS numerical simulation for the purpose of carrying out a basic assessment of the usefulness of the water spray for fire extinguishing. We analyzed the effect of securing the stability in temperature and smoke density in case of fire according to fire intensities (20MW, 50MW) and changes in wind speed. When there was no wind speed in tunnels, it was effective in securing the safety of people because the cooling effect of the water spray system had an excellent effect on reducing temperatures and smoke densities there. The higher a fire intensity is, the less effect it has on reducing smoke flows. When an air current exists in tunnels, its cooling effect disturbs the smoke stratification and lowers the visibility degree during evacuation. Therefore, the water spray for fire extinguishing should be put into action only after people take shelter during fire.

A Study on Response Characteristics of ionization Smoke Detector Influenced by Air Stream (이온화식 연기감지기의 기류응답특성 연구)

  • 이복영;정길순;이병곤
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.6-9
    • /
    • 2003
  • Recently, forced ventilating air conditioning system has been widely used in modern buildings. However, It is obvious that this kind of system may affect on the response of fire detectors at real fire incidents, especially, on the ionization smoke detector, which is critically influenced by air stream. Therefore we studied to verify the response characteristics of air stream by ionization smoke detector for the design of facilities in practice. In this study, experiments were executed to examine the correlation between air velocity and the ionization detector's responses with var-ious air velocity and smoke densities in the simulated test room. As a result of experiments, ionization detector's operating time is in reverse proportion to air velocity. And the detector shows more sensitive reaction when the velocity of smoke stream increase over 60 cm/s. In addition, it was shown that ionization smoke detector is more sensitive to smoldering fires in paper than that in petro-chemicals.

Full-Scale Test of Smoke-Control Performance of a Subway Tunnel (지하철 본선터널 제연성능 실물 실험)

  • Park, Won-Hee;Lee, Duck-Hee;Jung, Woo-Sung
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.94-102
    • /
    • 2011
  • Hot smoke test is done in a subway tunnel. Alcohol trays of 1.0 MW and smoke generators are used for generating hot smoke. The fans equipped with the tunnel are successively run 9 min after smoke generation. It is verified how hot smoke is controlled by fans. Velocity and direction of flow, temperature and smoke density are measured and analyzed for smoke control performance of the tunnel with fans and analyzed from the fire-safety-point of view. Velocity of smoke flow is obtained by using measured velocity and temperature at the ceiling of the tunnel. The time when smoke-control flow is builded up is different for the different positions. Velocity distributions at various positions will be used for the boundaries and the comparison data in numerical simulations for evaluation on smoke-control facilities of subway tunnel.

Biological active components in cigarette mainstream smoke (담배연기 중 생물학적 활성 성분)

  • Shin, Han-Jae
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.32 no.1
    • /
    • pp.41-54
    • /
    • 2010
  • 담배 주류연은 수천가지 종류의 다양한 형태의 화학물질로 구성되어있고, 이들 화학물질의 대부분은 극히 미량의 농도로 존재하는 것으로 알려져 있다(Green and Rodgman, 1996). 담배연기 속에서 발암물질로서는 poly cyclic aromatic hydrycarbon (PAHs) 류인 B(a)P를 최초로 보고된 이후, 현재까지 69종의 화합물이 담배연기중의 발암물질로서 알려졌으며, 여기에는 9종의 PAHs 그리고 4종의 aromatic amine, nitrosoamines 및 aldehydes 그리고 다른 무기 및 유기 화합물들을 포함된다. 또한 담배 주류연에는 여러 화학물질들에 의해 유발된 생물학적 독성을 상당히 감소시키는 것으로 확인된 성분들이 존재하는 것으로 알려져 있다. 이러한 담배연기 중에 존재하는 항 발암성 효과를 나타내는 성분들의 작용 메카니즘은 발암성 물질 또는 발암성 물질의 대사산물들과 반응을 하거나, 불활성화 시키거나, 세포 구성 물질들과의 반응에서 서로 경쟁하거나, 또는 발암성의 흡수를 간섭함으로서 발암성 효과를 없애거나 또는 감소시키는 것으로 생각된다. 여러 연구자들은 담배연기 응축물에서 종양 성장의 억제 작용을 하는 성분들이 존재하는 것으로 주장 하고 있다.(Hoffmann and Griffin, 1958; Fall et al., 1964; Homburger and Tregier, 1965). 담배 연기 중에는 발암성을 나타내는 성분들과 함께 항 발암성 및 항 돌연변이성 효과를 나타내는 성분들이 존재한다는 것이 다양한 생물학적 평가 연구들에 의해 증명되었다(Slaga and DiGivanni, 1984; Fay et al., 1984; Green and Rodgman, 1996).

A Study on the Application of a Exhaust Engine in Basement Karaoke Fires (지하 노래방 화재 시 배연차의 활용에 관한 연구)

  • Lee, Sung-Ryong
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.277-283
    • /
    • 2010
  • In this study, an experiment was conducted to evaluate the effectiveness of a exhaust engine in a basement karaoke fire. Exhaust engine was used as ventilation equipment in the experiment. Experiment was carried out in a basement karaoke for redevelopment. Temperature distribution and smoke concentration were evaluated according to the operation of an exhaust engine. Temperatures were decreased below $50^{\circ}C$ at the corridor due to the operation of the exhaust engine. Visibility was also improved.

New Smoke Risk Assessment on Wood Treated with Silicone Compound (실리콘 화합물로 처리된 목재의 새로운 연기위험성 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.16-27
    • /
    • 2019
  • A burning test was conducted on the smoke and combustion gases generated from cypress wood treated with sodium silicate, 3-aminopropyltrimethoxysilane sol, 3-(2-aminoethylamino)propylmethyldimethoxysilane sol, and 3-(2-aminoethylamino) propyltrimethoxysilane sol. The silicone compound sol was applied to each of the cypress wood specimens three times with a brush. The smoke and combustion generation gas were analyzed using a cone calorimeter (ISO 5660-1) and the smoke was also evaluated by applying new smoke risk assessment method. The smoke performance index (SPI) of the cypress treated with silicone compound increased 1.66 to 8.42 times and the smoke growth index (SGI) was 11.8 to 88.2%, respectively. The smoke intensity (SI) is expected to be 1.0~50.5% lower than that of the base specimens, resulting in lower smoke and fire hazards. The third maximum carbon monoxide (COpeak) concentration of the specimens treated with silicone compounds was 22.5~33.3% lower than that of the base specimens. On the other hand, it produced potentially fatal toxicity that was 1.48~1.72 times higher than the US Occupational Safety and Health Administration (OSHA) acceptance standard (PEL). Cypress wood itself produced a high carbon monoxide concentration, but the silicon compound played a role in reducing this level.

A Study on the Fire Risk of Car Interior Materials (자동차 내장재의 화재위험성에 관한 연구)

  • Lee, Hae-Pyeong;Kim, Young-Tak
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.82-88
    • /
    • 2010
  • In this study, we have performed several tests for composite plastic materials to be applied on interior materials of a vehicle to identify their combustion characteristics using cone calorimeter, smoke density chamber and toxicity index chamber. We have prepared a total of 12 samples for 4 major parts of a vehicle wherein each major part has 3 different materials. The results of cone calorimeter test showed ignition time of PVC sheet and PVC leather were 2s. The 8 samples showed under less than 10s of ignition time. The sample comprising Nylon and PE had the biggest maximum heat release rate of 635 $kW/m^2$. The sample comprising Rubber showed the smallest maximum heat release rate but with the biggest total heat release. The results of smoke density chamber test showed the sample that is made up with Rubber had the biggest specific optical smoke density. The sample comprising PVC leather and PUR showed the biggest VOF4 which enables the initial smoke production. The results of toxicity index test showed that all samples contained carbon dioxide content exceeding its lethal concentration. The sample comprising PVC showed high content of hydrogen chloride and hydrogen bromide. The PVC sheet showed the biggest toxicity index calculated by using lethal concentration and test results. Toxicity index of all sample wes over 1.

A Study on the Development of a Low-cost Device for Measuring the Optical Smoke Density (광학적 연기밀도 측정을 위한 저가형 장치의 개발에 관한 연구)

  • Kim, Bong-Jun;Cho, Jae-Ho;Hwang, Cheol-Hong;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.81-88
    • /
    • 2015
  • A low-cost device using the light-extinction method was developed to measure the optical smoke density in various fire experiments in the present study. The relative measurement accuracy of low-cost device was evaluated through the comparison of optical density measured by a high-cost standard device consisting of He-Ne laser, photo detector and various optical components. The low-cost device was composed of laser module, photocell and acrylic board. From the experiments using a smoke generator can be easily adjusted the smoke concentration, it was found that the low-cost device could measure the smoke density within the range of ${\pm}10%$, compared to the standard device. In addition, the reliability of low-cost device was also confirmed in the experiment using a polyethylene flame. Finally, it is expected that the low-cost device developed with real-time measurement and simple installation for measuring the smoke density will be used instead of the high-cost standard device.

Smoke Detection Based on RGB-Depth Camera in Interior (RGB-Depth 카메라 기반의 실내 연기검출)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • In this paper, an algorithm using RGB-depth camera is proposed to detect smoke in interrior. RGB-depth camera, the Kinect provides RGB color image and depth information. The Kinect sensor consists of an infra-red laser emitter, infra-red camera and an RGB camera. A specific pattern of speckles radiated from the laser source is projected onto the scene. This pattern is captured by the infra-red camera and is analyzed to get depth information. The distance of each speckle of the specific pattern is measured and the depth of object is estimated. As the depth of object is highly changed, the depth of object plain can not be determined by the Kinect. The depth of smoke can not be determined too because the density of smoke is changed with constant frequency and intensity of infra-red image is varied between each pixels. In this paper, a smoke detection algorithm using characteristics of the Kinect is proposed. The region that the depth information is not determined sets the candidate region of smoke. If the intensity of the candidate region of color image is larger than a threshold, the region is confirmed as smoke region. As results of simulations, it is shown that the proposed method is effective to detect smoke in interior.

Revision of the Input Parameters for the Prediction Models of Smoke Detectors Based on the FDS (FDS 기반의 연기감지기 예측모델을 위한 입력인자 재검토)

  • Jang, Hyo-Yeon;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.44-51
    • /
    • 2017
  • Accurate predictions of the activation time for smoke detectors using a fire simulation is are required to ensure the reliability of the RSET (Required Safe Egress Time) calculation in the process of PBD (Performance-Based Design). The objective of this study was to enhance the accuracy of input parameters for the numerical models of smoke detector based on the FDS. To this end, a Fire Detector Evaluator (FDE) developed in previous studies was improved. The uniformities of flow and smoke inside the FDE were improved and accurate measurements of the obscuration per meter (OPM) related to detector operation were also performed through a decrease in the forward scattering of smoke particles. The input parameters using the improved FDE showed a significant difference from the previous FDE quantitatively. In particular, a larger difference was found in a photoelectric detector compared to an ionization detector. Considering that the operating conditions of smoke detectors are affected by the detector type, combustibles, smoke particulars, and color, the database (DB) on the input parameters for various detectors and combustibles should be built to improve the reliability of PBD in future studies.