• Title/Summary/Keyword: 연구소 건축

Search Result 853, Processing Time 0.03 seconds

A Study on the Selection and Modification of Ground Motion Based on Site Response Analysis (부지응답해석에 기반한 지반운동 선정 및 보정에 관한 고찰)

  • Hwang, Jung-Hyun;Mauk, Ji-Wook;Son, Hyeon-Sil;Ock, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • In the recent seismic design code KDS 41 17 00, selection and modification procedures of ground motions which are used for nonlinear dynamic analyses were adopted. However, its practical applications are still limited due to the lack of literatures. This paper introduces case studies which used site-response analyses to select and modify ground motions for nonlinear dynamic analyses. Based on the case studies, design criterion for site-response analyses were reviewed thoroughly in the viewpoint of practical applications. It was found that design requirements related with bedrock motions are too conservative that ground motions are selected and modified in the excessive manner. It is especially true for low-rise building structures with period ranges including acceleration-sensitive regions. Even though surface motions have shown appropriate responses, such building structures have to re-select and re-modify ground motions based on pre-analysis procedures rather than post-ones according to the current seismic design code. Also, it was observed that building structures with soft soils under strong ground motions need more comprehensive investigations on soil properties and efficient analysis methods in order to perform site-response analyses. This is due to the fact that lack of reliabilities on soil properties and analysis methods could result in unstable site-responses.

Manufacturing of Wood Wool Board Mixed with Waste Paper-Mulberry Fiber and Analysis of Humidity Characteristics (폐닥나무 섬유를 혼입한 목모보드 제조 및 조습특성 분석)

  • Kim, Nam-Il;Jo, Jung-Hun;Seo, Sung-Kwan;Lee, Oh-Kyu;Lee, Hyung-Won;Bae, Sung-Chul;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.35-45
    • /
    • 2021
  • The humidity-control function and manufacturing characteristics of wood-wool boards using waste-paper-mulberry fiber were analyzed in this study. For the manufacture of wood-wool boards, the pulverizing times of waste-paper-mulberry fibers were controlled at 30, 60, 120, and 180 s, and the mixing amounts were controlled by adding 0%, 3%, 6%, and 9%, respectively, as compared to cement. Analysis of the moisture adsorption and desorption characteristics of the wood-wool boards controlled for pulverizing time revealed that the wood-wool board with 60 s of pulverized fiber exhibited the best adsorption and desorption performances. It was estimated that the adsorption and desorption performances of the material itself were adequate even when the boards were mixed because of minimal damage to the fiber. In addition, an analysis of the absorption and desorption characteristics of the fiber-mixture-controlled wood-wool boards showed that the 6%-mixed wood-wool board had the best absorption and desorption performances of 291.00 g/m2 and 108.75 g/m2, respectively.

Evaluation of Shear Performance of Rectangular NRC Beam (직사각형 NRC 보의 전단성능 평가)

  • Lee, Ha-Seung;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.81-88
    • /
    • 2022
  • In the NRC (New paradigm Reinforced Concrete) beam, steel forms, main angles used as main reinforcements, and shear angles used as basic shear reinforcements are welded and assembled in the form of vierendeel truss structures in a steel factory. After the NRC truss frame is installed at the site, additional main reinforcement and shear reinforcement are distributed. In this study, the shear performance evaluation of the NRC beam was conducted through shear tests in accordance with the type of shear reinforcement of the NRC beam (shear angle, inclined shear reinforcing bar, and U-type cover bar). As a result of the test, the initial stiffness was similar before the initial cracking of each specimen, and all specimens were shear fractured.The shear reinforcements of the specimens exhibited a yielding behavior at the time of the maximum sheat force, and the shear strengths of the specimens increased as the amount of reinforcement of the shear reinforcement increased. These results show that NRC shear reinforcements exhibit shear performance corresponding to their shear strength contribution. As a result of calculating the nominal shear strengths according to KDS 14 20 22, the experimental shear strengths of the NRC beam specimens with shear reinforcement was 37~146% larger than the nominal shear strengths, so It was evaluated as a safety side.

A Study on Forecasting Industrial Land Considering Leading Economic Variable Using ARIMA-X (선행경제변수를 고려한 산업용지 수요예측 방법 연구)

  • Byun, Tae-Geun;Jang, Cheol-Soon;Kim, Seok-Yun;Choi, Sung-Hwan;Lee, Sang-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.214-223
    • /
    • 2022
  • The purpose of this study is to present a new industrial land demand prediction method that can consider external economic factors. The analysis model used ARIMA-X, which can consider exogenous variables. Exogenous variables are composed of macroeconomic variable, Business Survey Index, and Composite Economic Index variables to reflect the economic and industrial structure. And, among the exogenous variables, only variables that precede the supply of industrial land are used for prediction. Variables with precedence in the supply of industrial land were found to be import, private and government consumption expenditure, total capital formation, economic sentiment index, producer's shipment index, machinery for domestic demand and composite leading index. As a result of estimating the ARIMA-X model using these variables, the ARIMA-X(1,1,0) model including only the import was found to be statistically significant. The industrial land demand forecast predicted the industrial land from 2021 to 2030 by reflecting the scenario of change in import. As a result, the future demand for industrial land was predicted to increase by 1.91% annually to 1,030.79 km2. As a result of comparing these results with the existing exponential smoothing method, the results of this study were found to be more suitable than the existing models. It is expected to b available as a new industrial land forecasting model.

Numerical Analysis of Wind Environment around Sungnyemun Gate Using a Computational Fluid Dynamics Model (전산유체역학 모델을 이용한 숭례문 주변의 풍환경 수치해석)

  • Son, Minu;Kim, Do-Yong
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2021
  • In this study, the wind environment in an urban area near Sungneymun gate was numerically investigated in the cases of inflow directions. The wind fields for the target area were simulated using Geographic Information System data and Computational Fluid Dynamics model. Results, including vector fields, three-dimensional wind velocity components, and wind speeds, were analyzed to examine flow characteristics. Wind direction variability affected by buildings was shown in the target area. The complex flows around Sungneymun did not depend on the inflow direction as a boundary condition. The wind speed around Sungneymun was generally 3 times stronger at 14 m above ground level (AGL) compared to the surface wind at 2 m AGL and relatively high in the case of easterly inflow. The effect of wind was also analyzed to be relatively significant at the southeast side of Sungneymun. Thus, it was suggested that the assessment of wind environment affected by high-rise and high-density buildings should be necessary for the architectural heritage in urban areas.

Evaluation of Surface Temperature Variation and Heat Exchange Rate of Concrete Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 콘크리트 도로 포장체의 표면 온도 변화와 방열량 평가)

  • Byonghu Sohn;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have been well established and documented to provide road safety in winter season over the past two decades. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their performance. The aim of this study is to investigate the thermal performance of the concrete HHP systems, including surface temperature variations of experimental pavements in winter season. For preliminary study a small-scale experimental system was installed to evaluate the heat transfer characteristics of the concrete HHP in the test field. The system consists of 3 concrete slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In these slabs, circulating water piping was embedded with different pipe depths of 0.08 m (Case A), 0.12 m (Case B), and 0.20 m (Case C) and same horizontal space of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. Overall, the surface temperature of the concrete HHPs remained above 3℃ in all experimental conditions applied in this study. The results of the surface temperature measurement with respect to the pipe depth showed that Case B was the highest among the three cases. However, the closer the circulating water pipe was to the pavement surface, the greater the heat exchange rate. This results is considered that the heat is continuously accumulated inside the pavements and then the temperature inside the pavements increases, while the amount of heat dissipation decreases as the temperature difference between the inlet and outlet of circulating water decreases. In this preliminary test the applicability of the concrete HHP on road deicing was confirmed. Finally, the results can be used as a basis for studying the effects of various variables on road pavements through numerical analysis and for conducting large-scale empirical experiments.

Characteristics and Status of Roof Tile Buildings of Pungnaptoseong Fortress (풍납토성 기와건물지의 성격과 위상)

  • SO Jaeyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.46-59
    • /
    • 2023
  • Various Baekje ground-level building sites have been identified, in Pungnaptoseong Fortress, including Mirae Village's site E-1. However, building site E-1 is the only one with excavated roof tiles that are directly connected to the building site. As for building sites E-2, D-1, and D-2, which are comparable to site E-1, it is very possible that they had tiles on the roof based on their jeoksim (blocking facilities for roof slopes) and building structures. Also, although they are semi-underground pit structures, pit building sites A-30 and modern apartment site A-5, as well as the No.44 remains of Gyeongdang District, which is closer to a ground-level type, the buildings with tiles may have been constructed in the form of partial tile roofs rather than full-face tile roofs. Therefore, there may be several reasons behind the use of tiles on roofs in the early days, but the primary background of the building's authoritative function would have been considered first. Considering that China and Japan started using tiles on nationally important buildings such as palaces, temples, and ritual buildings, it may be presumed that Baekje began using tiles from the time it centralized power. It is believed that Baekje's early roof tile buildings evolved from rudimentary residential architecture to advanced public architecture, taking into consideration fire prevention and structural stability in large buildings. It is difficult to find similar cases in Korea with structural features such as the elevated foundations or underground stone foundations that can be found in Mirae Village building site E-1. Rather, similar architectural techniques can be found in China and Japan. In China, similar construction techniques were discovered in buildings of worship that were primarily built in the palace surroundings, such as Jangan Castle. Based on this, it appears that roof tile building sites, such as site E-1, that have been discovered have a strong correlation with the characteristics of buildings of worship, and ground type buildings, such as sites D-1 and D-2, are important facilities that are related to important public facilities such as state-run warehouses. This provides many implications regarding the early Baekje city structure.

Reaction Characteristics of the CAC with Various Gypsum Type and Mixing Ratio (석고 종류 및 혼입률에 따른 CAC 반응 특성)

  • Choi, Sun-Mi;Kim, Jin-Man;Koo, Ja-Sul
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.83-91
    • /
    • 2021
  • Ladle furnace slag is a byproduct of the steel-making process, and it contains the mineral β-C2Sandtherapid-settingmineral (dependingonwhichreducingagenthasbeenused). Ladle furnace slag is often treated through slow cooling, which causes the slag to lose its reactivity. In this study, the properties of air-quenched CAC and pulverized ladle furnace slag containing gypsum were evaluated, and the optimal mixing ratio was determined for broadening their usage. Consequently, the properties of CAC aredemonstrated by the dissolution of gypsum after a period of three hours and the content of gypsum after a period of one day. The optimal mixing ratio of anhydrate and hemihydrate gypsum is found to be within 30% and that of dihydrate gypsum is found to be higher than 35%. Furthermore, based on the results of CAC with dihydrate gypsum, the applicability of the by-product dihydrate gypsum has been verified.

Size Distributions of Particulate Matter Emitted during 3D Printing and Estimates of Inhalation Exposure (3D 프린팅 가동 조건 별 발생 입자크기 분포와 흡입 노출량 추정)

  • Park, Jihoon;Jeon, Haejoon;Park, Kyungho;Yoon, Chungsik
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.6
    • /
    • pp.524-538
    • /
    • 2018
  • Objective: This study aimed to identify the size distributions of particulate matter emitted during 3D printing according to operational conditions and estimate particle inhalation exposure doses at each respiratory region. Methods: Four types of printing filaments were selected: acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA), Laywood, and nylon. A fused deposition modeling (FDM) 3D printer was used for printing. Airborne particles between 10 nm and $10{\mu}m$ were measured before, during, and after printing using real-time monitors under extruder temperatures from 215 to $290^{\circ}C$. Inhalation exposures, including inhaled and deposited doses at the respiratory regions, were estimated using a mathematical model. Results: Nanoparticles dominated among the particles emitted during printing, and more particles were emitted with higher temperatures for all materials. Under all temperature conditions, the Laywood emitted the highest particle concentration, followed by ABS, PLA, and nylon. The particle concentration peaked for the initial 10 to 20 minutes after starting operations and gradually decreased with elapsed time. Nanoparticles accounted for a large proportion of the total inhaled particles in terms of number, and about a half of the inhaled nanoparticles were estimated to be deposited in the alveolar region. In the case of the mass of inhaled and deposited dose, particles between 0.1 and $1.0{\mu}m$ made up a large proportion. Conclusion: The number of consumers using 3D printers is expected to expand, but hazardous emissions such as thermal byproducts from 3D printing are still unclear. Further studies should be conducted and appropriate control strategies considered in order to minimize human exposure.

State of the Art on GNSS Reflectometry and Marine Applications (위성신호 반사계측(GNSS-R) 기술 현황과 해양 응용분야)

  • Seo, Kiyeol;Park, Sang-Hyun;Park, Jihye
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.402-408
    • /
    • 2021
  • GNSS-Reflectometry (GNSS-R) is a technique for measuring and analyzing signals transmitted from satellites, reflecting on the surface of land or sea. GNSS-R is mainly used for measuring the water level variation, typhoon and meteorological anomaly, soil moisture, and snow depth. This paper describes the concept and measurement principle of GNSS-R technology, especially focusing on the field of marine utilization and its feasibility. In particular, it presents the applications of this technique for monitoring the safety of marine environment as well as the marine vessel and their utilization areas based on currently available infrastructure on the ground and maritime reference stations, such as the existing differential GNSS reference stations and integrity monitors (DGNSS RSIM), and GNSS reference station infrastructure, using the ground-based and the satellite-based GNSS-R approaches.