• Title/Summary/Keyword: 연구소 건축

Search Result 853, Processing Time 0.027 seconds

Comparative Analysis of Travel Behaviors, Activity Range, and Life Patterns of Children and Parents in Elementary School Neighborhood - Focused on the Neighborhood around Sin-gok Elementary School in Gangseo-gu - (초등학교 근린 내 어린이와 학부모의 통행특성과 활동범위, 생활패턴 비교 분석 - 서울시 강서구 신곡초등학교 일대를 대상으로 -)

  • Chae, Han-Hee;Lee, Kyung-Hwan;Ko, Eun-Jeong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.2
    • /
    • pp.87-96
    • /
    • 2020
  • Recently, due to the child-friendly city project being conducted by UNICEF, the movement to create a child-friendly cities has been actively promoted by the South Korean government. However, due to the lack of specific physical plans to improve the basic rights of children in the city, the project has been mainly implemented for educational and institutional projects. In this study, we investigated the activities of children and parents living in elementary school neighborhoods. Based on our investigation, we attempted to generate the desired results that can be referred to by physical planners looking to make changes to school neighborhoods by comparing and analyzing children and parents' activity range and life patterns in the neighborhood. The GPS and traffic log surveys were conducted as the primary research methods. The results of this study are as follows: First, both children and parents are most likely to walk in their neighborhoods. In addition, the use of private cars and school vehicles was high, but the use of public transportation was low. Second, the longer parents and children stayed together, the wider the range of their activities. Third, children who spent a lot of time with parents were more likely to have diverse life patterns than children who did not spend a lot of time with parents. Fourth, parents who live in elementary school neighborhoods frequently used commercial facilities and cultural centers around the school. Therefore, it is important to construct facilities around the school for parent-use.

Development of Online Machine Learning Model for AHU Supply Air Temperature Prediction using Progressive Sampling and Normalized Mutual Information (점진적 샘플링과 정규 상호정보량을 이용한 온라인 기계학습 공조기 급기온도 예측 모델 개발)

  • Chu, Han-Gyeong;Shin, Han-Sol;Ahn, Ki-Uhn;Ra, Seon-Jung;Park, Cheol Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.63-69
    • /
    • 2018
  • The machine learning model can capture the dynamics of building systems with less inputs than the first principle based simulation model. The training data for developing a machine learning model are usually selected in a heuristic manner. In this study, the authors developed a machine learning model which can describe supply air temperature from an AHU in a real office building. For rational reduction of the training data, the progressive sampling method was used. It is found that even though the progressive sampling requires far less training data (n=60) than the offline regular sampling (n=1,799), the MBEs of both models are similar (2.6% vs. 5.4%). In addition, for the update of the machine learning model, the normalized mutual information (NMI) was applied. If the NMI between the simulation output and the measured data is less than 0.2, the model has to be updated. By the use of the NMI, the model can perform better prediction ($5.4%{\rightarrow}1.3%$).

Comparative Analysis of Substrate Wet Surface Adhesion and Substrate Movement Response Performance Testing Methods for Injection Type Repair Materials Used in Leakage Cracks of Concrete Structure in Underground Environment (지하 습윤 환경에서 콘크리트 구조물 균열 누수에 사용되는 주입형 보수재료의 부착 성능과 거동 대응 성능 평가의 상관성 분석 연구)

  • Kim, Soo-Yeon;Oh, Kyu Hwan;Oh, Snag-Keun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.19-26
    • /
    • 2018
  • The focus of this study was centered around 15 common injection type water leakage repair materials (3 different types for each; synthetic polymer, cementitious, acrylic, epoxy, urethane) used in concrete structures of Korea and analyzing their wet surface adhesion performance in accordance to the ISO TS 16774 Test Method for Repair Materials for Water-leakage Cracks in Underground Concrete Structures, Part 4: Test Method for Adhesion on Wet Concrete Surface, and the results of this study was taken to be place under a comparative analysis with the results of the preceeding study on response to substrate movement performance study. The results of this comparative study showed that other than 1 specimen of 1 type of the acrylic and 3 specimens of 1 type of the synthetic polymer type materials, all of the 93% of the specimens used in this study showed stable adhesion on wet substrate surface, and we were able to determine that materials that have proper response properties against substrate movement are highly flexible and have high adhesion properties, but their adhesion properties on wet substrate would change based on their viscosity.

Effect of Various Partial Replacements of Cement with Blast Furnace Slag and Different Placing Times on Thermal Properties of Mass Concrete and Modeling Work (타설시간차에 의한 고로슬래그 미분말의 치환율별 매스콘크리트의 온도특성)

  • Kim, Jong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.207-215
    • /
    • 2019
  • The aim of the research is analyzing the simple adiabatic temperature rising properties and the heat of hydration based on different placing timing of the mass concrete depending on various replacing ratios of blast furnace slag to comparative analyze the thermal cracking index and cracking possibility. As a result from the experiment, a suggested adiabatic temperature rising equation based on various blast furnace slag replacing ratios can be provide favorable correlation with over 0.99 of $R^2$ value by applying the initial induction period. With this relationship, more accurate prediction of the amount of the hydration heat rising and heating timing, and it is known that there is an approximately $13.1^{\circ}C$ of gap between plain concrete without blast furnace slag and concrete with 80 % of replacing blast furnace slag. To control the setting time and heat rising gap, the mix designs between top and bottom concrete casts were changed 15 cases, and D, E, H, I, and L models of controlling the heat of hydration showed 41.23 to $46.88^{\circ}C$ of core temperature and 0.98 to 1.27 of thermal cracking index. Therefore the cracking possibility was 15 to 52 % of favorable results of possibly controlling both the cracking due to the internal and external retainment and concrete temperature at early age.

An Experimental Study on the Seismic Performance of Reinforced Concrete Exterior Beam-Column Joint with Steel Fiber Volume Fractions (강섬유 혼입률에 따른 철근콘크리트 외부 보-기둥 접합부의 내진성능에 대한 실험적 연구)

  • Lee, Jang-Jae;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.15-23
    • /
    • 2018
  • The purpose of this study is to evaluate the anchorage capacity of longitudinal bars for reinforced concrete exterior beam - column joints with steel fiber volume fractions. For this purpose, the steel fiber volume fraction was set to 0, 1, 2%, and the performance was compared with that of each other specimens. According to the test results, the maximum strength of EX-HK-NJR-0 decreased by 13% compared with the control specimen and EX-HK-NJR-1 decreased by 3% compared to the control specimen. However, when 2% of steel fiber was mixed, the maximum strength increased about 56% compared to the control specimen. The energy dissipation capacity of EX-HK-NJR-0 (when no transverse steel bars are placed) decreased by 61% compared to the control specimen. In addition, the energy dissipation capacity of the specimens with a steel fiber content of 1% decreased by 5% and 2% increased by 94% compared to control specimen. EX-HK-NJR-1,2 and the control specimen EX-HK-JR-0 experienced yielding of the reinforcing bars at the column interface before maximum strength development. However, when the EX-HK-NJR-0, the reinforcing bars at the column interface experienced yielding after maximum strength development. Therefore, reinforcement of steel fiber is considered to reduce the required development length for yielding of steel bars.

A Study on the Function of Mats the Banquet space in the Joseon Dynasty (궁궐 연향 공간의 지의(地衣) 연구)

  • Seok, Jin-Young
    • Journal of architectural history
    • /
    • v.29 no.6
    • /
    • pp.79-88
    • /
    • 2020
  • During the Joseon Dynasty, the rituals that were celebrated in the palaces were mainly held inside the palace and in the courtyard of the palace. Mats were spread on the floor of the place where the ritual was held. The mats spread in the Joseon Dynasty rituals divided the space in various ways, and in particular, they were spread in a certain form in the spaces of royal wedding, customs, and court banquet. Mats were the primary physical element that divided the royal ritual space of the Joseon Dynasty, and functioned to elevate the general space to the ritual space. In the ritual space, mats were spread inside the palace, and divided the courtyard of the palace into left and right in a symmetrical form to distinguish the hierarchy of the participants. Mats with special and white patterns were spread in the external ceremonial space and mats with flower and colorful patterns were spread in the internal ceremonial space. This was the subdivision of the Confucianism's male-female division through the mat. The pattern of the mat that divided the space of the royal family elders also meant longevity to reflect the filial thoughts of the Confucianism through the mat. Mats were a physical element for subdividing the royal family and the participants in the hierarchy of the space where the ritual is held, and it also performed a subdividing function between the royal participants. In other words, in the Joseon Dynasty ritual space, mats were temporarily spread while the ritual is being celebrated and functioned to elevate the space to a ritual space. It is confirmed that the fact that the mats were temporarily spread to divide the space into the hierarchies according to the status and were subdivided into colors and patterns to perform the function to reflect the subdivision of the royal family according to Confucianism and the statue of filial piety in the ritual.

Performance Evaluation of Post-installed Anchor according to Sleeve Length and Header Length (슬리브 및 헤드 길이에 따른 후설치 앵커의 인발성능평가)

  • Hur, Moo-Won;Chae, Kyoung-Hun;An, Yeong-Seung;Park, Tae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.8-15
    • /
    • 2021
  • This study presents post-installed anchors whose heads and extension sleeves are improved. The optimal lengths of the extension sleeves and headers were analytically determined by simulations. As a result of analysis using Finite element method (FEM), 9.0mm and 3.0mm were determined as the optimal lengths of sleeves and headers respectively. In pull-out tests using the improved post-installed anchors, all specimens satisfied the coefficient of variation of 15%. Comparing the pull-out strengths of existing anchors and the improved anchors, it was increased by 1.25 times for anchors embedded with a depth of 50mm, and 1.54 times for 70mm. In the cases of high-strength concrete, the strengths were increased by 1.28 and 1.55 times for 50mm and 70mm respectively. Moreover, as a result of shear tests, the improved anchors perform the greater strength of 1.38 times than the existing anchors.

Strength Properties of High-Strength Concrete Piles Using an Industrial by-Product (산업부산물을 치환한 고강도 콘크리트 말뚝의 강도 특성)

  • Shin, Kyoung-Su;Lim, Byung-Hoon;Hwang, Sun-Kyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.85-91
    • /
    • 2020
  • The necessity for ground reinforcement of structures has been increasing in South Korea because buildings have encountered constructional problems such as inclined structures and collapses caused by earthquakes or differential settlement of the foundations. With regard to a ground reinforcement method, an increasing number of high-strength concrete piles have been used based on their advantages, including a wide range of penetration depth and a high load-bearing capacity. However, problems such as the destruction of a pile head during on-site placement work can occur when the pile has insufficient strength. For this reason, the strength of such piles should be managed more thoroughly. Thus, this study analyzed the strength properties of high-strength concrete piles using blast furnace slag (BFS) powder as a cement replacement, which was generated as an industrial byproduct. The analysis results indicated that the compression strength of the concrete piles increased when 10% to 20% of the cement was replaced with ground granulated blast-furnace slag (GGBS). In addition, the compression strength of the concrete piles was calculated to be 80.6 MPa when 20% of the cement was replaced with GGBS, which was greater by 5% than that of an ordinary Portland cement (OPC) specimen.

Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill (조적채움벽을 갖는 RC 벽-슬래브 골조의 내진성능 연구)

  • Kim, Chan Ho;Lee, Seung Jae;Heo, Seok Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • This study investigated the seismic performance of reinforced concrete (RC) wall-slab frames with masonry infills. Four RC wall-slab frames with or without masonry infill were tested under cyclic loading. The RC frames were composed of in-plane and out-of-plane walls and top and bottom slabs. For masonry infill walls, cement bricks were stacked applying mortar paste only at the bed joints, and, at the top, a gap of 50 mm was intentionally left between the masonry wall and top RC slab. Both sides of the masonry walls were finished by applying ordinary or fiber-reinforced mortars. The tests showed that despite the gap on top of the masonry walls, the strength and stiffness of the infilled frames were significantly increased and were different depending on the direction of loading and the finishing mortars. During repeated loading, the masonry walls underwent horizontal and diagonal cracking and corner crushing/spalling, showing a rocking mode inside the RC wall-slab frame. Interestingly, this rocking mode delayed loss of strength, and as a result, the ductility of the infilled frames increased to the same level as the bare frame. The interaction of masonry infill and adjacent RC walls, depending on the direction of loading, was further investigated based on test observations.

Mechanical Properties of Slag-Based Cementless Composites According to Types of Polyethylene Fibers (폴리에틸렌 섬유 종류에 따른 고로슬래그 기반 무시멘트 복합재료의 역학특성)

  • Jin, Jeong-Eon;Choi, Jeong-Il;Park, Se-Eon;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.243-251
    • /
    • 2022
  • The purpose of this study is to investigate experimentally the effect of polyethylene fibers with different tensile strength and aspect ratio on the properties of cementless composite. Three types of mixtures according to the types of polyethylene fibers and water-to-binder ratio were prepared and density, compressive strength and tension tests were performed. Test results showed that the mixture reinforced by polyethylene fiber with a low tensile strength by 10 % and a high aspect ratio by 8.3 % had a high tensile strain capacity by 11.7 %, a high toughness by 12.4 %, and a low crack width by 9.1 %. It was also observed that high tensile strain capacity and better cracking pattern could be achieved by increasing the water-to-binder ratio of composite although its strength is low.