DOI QR코드

DOI QR Code

Mechanical Properties of Slag-Based Cementless Composites According to Types of Polyethylene Fibers

폴리에틸렌 섬유 종류에 따른 고로슬래그 기반 무시멘트 복합재료의 역학특성

  • Jin, Jeong-Eon (Department of Architecture and Civil Engineering, Chonnam National University) ;
  • Choi, Jeong-Il (Biohousing Research Center, Chonnam National University) ;
  • Park, Se-Eon (Department of Architecture and Civil Engineering, Chonnam National University) ;
  • Lee, Bang Yeon (School of Architecture, Chonnam National University)
  • 진정언 (전남대학교 건축토목공학과) ;
  • 최정일 (전남대학교 바이오하우징연구소) ;
  • 박세언 (전남대학교 건축토목공학과) ;
  • 이방연 (전남대학교 건축학부)
  • Received : 2022.08.30
  • Accepted : 2022.09.22
  • Published : 2022.09.30

Abstract

The purpose of this study is to investigate experimentally the effect of polyethylene fibers with different tensile strength and aspect ratio on the properties of cementless composite. Three types of mixtures according to the types of polyethylene fibers and water-to-binder ratio were prepared and density, compressive strength and tension tests were performed. Test results showed that the mixture reinforced by polyethylene fiber with a low tensile strength by 10 % and a high aspect ratio by 8.3 % had a high tensile strain capacity by 11.7 %, a high toughness by 12.4 %, and a low crack width by 9.1 %. It was also observed that high tensile strain capacity and better cracking pattern could be achieved by increasing the water-to-binder ratio of composite although its strength is low.

이 연구의 목적은 인장강도 및 형상비가 다른 폴리에틸렌 섬유가 무시멘트 복합재료의 인장거동에 미치는 영향을 실험적으로 조사하는 것이다. 이를 위하여 섬유 종류 및 물-결합재비를 달리한 세 가지 배합을 준비하였고, 밀도 실험, 압축강도 실험 및 일축인장 실험을 수행하였다. 실험결과 유사한 화학구조를 갖지만 인장강도가 10 % 낮고, 형상비가 8.3 % 높은 폴리에틸렌 섬유를 사용한 경우 복합재료의 인장변형성능과 인성이 각각 11.7 %와 12.4 % 높고 균열폭은 9.1 % 작은 성능을 나타내었다. 또한 동일한 폴리에틸렌 섬유를 사용한 경우 물-결합재비가 증가하여 복합재료의 강도가 낮지만 인장변형성능과 균열패턴이 향상될 수 있는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원(과제번호 22CTAP-C163852-02)과 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A4A1033838).

References

  1. ACI Committee 544 (1996). Report on Fiber Reinforced Concrete, 544.1R-96, American Concrete Institute.
  2. Choi, J.I., Lee, B.Y., Ranade, R., Li, V.C., Lee, Y. (2016). Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite, Journal of the Cement and Concrete Composites, 70, 153-158. https://doi.org/10.1016/j.cemconcomp.2016.04.002
  3. JSCE. (2008). Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Concrete Engineering Series.
  4. Kanda. T., Li. V.C. (2006). Practical design criteria for saturated pseudo strain hardening behavior in ECC, Journal of Advanced Concrete Technology, 4(1), 59-72. https://doi.org/10.3151/jact.4.59
  5. Kim, Y.Y., Kong, H.J., Li, V.C. (2003). Design of engineered cementitious composite (ECC) suitable for wet-mix shotcreting, ACI Materials Journal, 100(6), 511-518.
  6. Lee, B.Y., Cho, C.G., Lim, H.J., Song, J.K., Yang, K.H., Li, V.C. (2012). Strain hardening fiber reinforced alkali-activated mortar-a feasibility study, Construction and Building Materials, 37, 15-20. https://doi.org/10.1016/j.conbuildmat.2012.06.007
  7. Lepech, M.D., Li, V.C. (2009). Water permeability of engineered cementitious composites, Cement and Concrete Composites, 31(10), 744-753. https://doi.org/10.1016/j.cemconcomp.2009.07.002
  8. Li, M., Li, V.C. (2013). Rheology, fiber dispersion, and robust properties of engineered cementitious composites, Journal of the Materials and Structure, 46(3), 405-420. https://doi.org/10.1617/s11527-012-9909-z
  9. Maalej, M., Li, V.C. (1994). Flexural/tensile-strength ratio in engineered cementitious composites, ASCE Journal of Materials in Civil Engineering, 6(4), 513-528. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:4(513)
  10. Malhotra, V.M. (2001). Introduction: sustainable development and concrete technology, Concrete Internal, 24(7), 22.
  11. Mindess, S., Young, J.F., Darwin, D. (2003). Concrete, Prentice-Hall Englewood Cliffs, NJ, 317.
  12. Ohno, M., Li, V.C. (2014). A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites, Construction and Building Materials, 57, 163-168. https://doi.org/10.1016/j.conbuildmat.2014.02.005
  13. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S. (2008). Alkaliactivated binders: a review. part 2. about materials and binder manufacture, Journal of the Construction and Building Materials, 22(7), 1315-1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019
  14. Park, S.Y., Choi, J.I., Lee, B.Y. (2021). Effects of curing conditions on compressive strength and tensile behavior of alkali-active slag-based fiber reinforced composites, Journal of the Korean Recycled Constuction Resources Institute, 9(3), 260-267 [in Korean].
  15. Roy, D.M. (1999). Alkali-activated cements: opportunities and challenges, Journal of the Cement and Concrete Research, 29(2), 249-254. https://doi.org/10.1016/S0008-8846(98)00093-3
  16. Shi, C., Roy, D., Krivenko, P.V. (2006). Alkali-Activated Cements and Concrete. Taylor and Francis.
  17. Van Damme, H. (2018). Concrete material science: past, present, and future innovations, Cement and Concrete Research, 112, 5-24. https://doi.org/10.1016/j.cemconres.2018.05.002
  18. Yang, E.H., Sahmaran, M., Yang, Y., Li, V.C. (2009). Rheological control in the production of engineered cementitious composites, ACI Materials Journal, 106(4), 357-366.