• Title/Summary/Keyword: 연구소 건축

Search Result 853, Processing Time 0.032 seconds

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

A Study on the Direction of User Participatory Design for School using Socio-Spatial Network Analysis - Focused on the middle and high school in Seoul - (사회-공간 네트워크 분석을 활용한 학교설계 사용자 참여디자인 방향에 관한 연구 - 서울시 중, 고등학교 사례를 중심으로 -)

  • Shin, Doosik;Cho, Tae-Ho;Jeon, Young-Hoon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.10
    • /
    • pp.19-30
    • /
    • 2019
  • The purpose of this study is to explore ways to efficiently capture the opinions of students who are main users in the planning, planning and design of school facilities. There are many criteria for determining good schools, but in this study, the main purpose of this study was to set up the main users as students, and to analyze the differences between the network and the actual spatial structure (network) created by the hope of students' use of school space, and the direction to overcome the differences. After surveying students' opinions about their satisfaction with school space and their desire to use school space by limiting the survey target to middle and high schools in Seoul, the 'social-space network analysis' was recently established in the social science field. As a result, it was found that the proximity of space and space desired by students in the school varied greatly depending on the geographical conditions, school districts, and the status of the current facilities, and the direction of improvement specialized for each school was found.

Estimation Method of Energy Consumption by End-Use in Office Buildings based on the Measurement Data (계측데이터를 이용한 업무시설에서의 에너지용도별 사용량 추정방법 연구)

  • Kim, Sung-Im;Yang, In-Ho;Ha, Soo-Yeon;Lee, Soo-Jin;Jin, Hye-Sun;Suh, In-Ae;Song, Seung-Yeong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.5
    • /
    • pp.165-176
    • /
    • 2020
  • The purpose of this study is to develop a estimation method of energy consumption by end-use in office buildings. For this, the current status of information on building energy use was investigated, and the domestic and foreign literature on the classification of energy use in non-residential buildings and the estimation method of energy use were reviewed. In addition, the characteristics of energy consumption by end-use were analyzed with measurement data of 48 office buildings in Seoul. As results, the annual and monthly estimation method of energy consumption by end-use in office buildings using public and measurement data was presented, and the applicability of the estimation method was examined by applying to sample office buildings.

Tensile Properties of One-component Silicon Sealants by Heat Deterioration (1성분형 실리콘계 실리콘의 열 열화에 대한 인장 성능 평가)

  • Lee, Jun;Miyauchi, Hiroyuki;Koo, Kyung-Mo;Choe, Gyeong-Cheol;Yoon, Min-Ho;Miyauchi, Kaori
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.173-174
    • /
    • 2013
  • In this study, the tensile properties of sealants by heat deterioration were measured and analysed to gather the basic data of sealant because these studies do not have been investigated in Korea. Most general one-component silicone sealants were used and test specimen was I-type. The test parameters are sealant types which have different density and heat deterioration time in 80℃. As a result, the rat of reduction in area by heat deterioration was considerable increased at SR-A compared with SR-B. The tensile properties by heat deterioration decreased at SR-A because the specimen by deterioration occurred adhesive failure before tensile test. However, SR-B specimen was increased at maximum tensile stress but decreased at elongation in maximum tensile stress. Also, Maximum principal stress was measured at the edge of specimen by FEM simulation in order to find out failure points.

  • PDF

Energy Performance and Cost Assessment for Implementing GroundSource Heat Pump System in Military Building (군사시설 내 지열 히트펌프 시스템 적용에 따른 에너지 성능과 비용 절감 효과 평가)

  • Byonghu Sohn;Kyung Joo Cho;Dong Woo Cho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.45-57
    • /
    • 2022
  • The Ministry of National Defense of the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of military facilities and to promote green growth policy in military sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. This paper analyzed energy performance and energy cost on the conventional heating and cooling system (baseline scenario) and three different alternative scenarios (ALT 1, ALT 2 and ALT 3) applied in a hypothetical military building. A building modeling and simulation software (DesignBuilder V6.1) with EnergyPlus calculation engine was used to calculate the energy consumption for each scenario. Overall, when the GSHPs are applied to both space airconditioning and domestic hot water (DHW) production, Alt-2 and Alt-3, the amount of energy consumption for target building can be greatly reduced. In addition, when the building envelope performance is increased like Alt-3, the energy consumption can be further reduced. The annual energy cost analysis showed that the baseline was approximately 161 million KRW, while Alt-3 was approximately 33 million KRW. Therefore, it was analyzed that the initial construction cost increase could be recovered within about 6.7 years for ALT 3. The results of this study can help decision-makers to determine the optimal strategy for implementing GSHP systems in military buildings through energy performance and initial construction cost assessment.

Research on non-welding door frame assembly method that allows on-site assembly (현장조립이 가능한 무용접 도어프레임 조립방식에 대한 연구)

  • Lee, Joo-Won;Lim, Bo-Hyeok;Lee, Gwang-Woo;Lee, Hae-Yeol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.155-156
    • /
    • 2023
  • In the case of steel door frames commonly found in general buildings, there are various assembly methods such as rivets, bolts, and welding, but the welding method is generally used. However, this welding joint method has many problems, such as distortion due to heat and damage due to external shock. In particular, when used as a fire door, problems may occur in the event of a fire due to distortion caused by heat from welding and the weak welded joint area. In the case of rivet or welded joints, when moved after assembly, joint loosening due to external shock may occur. Problems may arise where the bonding strength becomes weak. In addition, with the recent increase in high-rise buildings and larger buildings, when assembly is completed and brought to the site, a place is needed to store it, and in addition, there is a problem in that it has to be transported several times in small quantities to the installation site, which is another problem of time and cost loss. This is coming to the fore. In order to fundamentally solve this problem, we have researched and developed a non-welding door frame that can be assembled on site. We have researched and developed three assembly methods: screw-type, insert-type, and protrusion-type. Non-welded door frames are small in size and easy to package, making them advantageous for domestic and overseas exports.

  • PDF

Appraisal Study on Tensile Test Method of Mechanical Properties of FRP Composite Used in Strengthening RC Members (구조보강용 FRP 복합체의 역학적 특성치 분석을 위한 인장시험방법 평가 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kang, In-Seok;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.73-80
    • /
    • 2008
  • Experimental study has been performed in order to construct the standard test methods and appraisal criteria by investigating the influence of specimen types(property, width, layers) and loading rate on the tensile characteristics of FRP used in strengthening RC structures. The FRP composite tested in this study are the unidirectional CFRP sheet/strip and the bidirectional GFRP sheet. Test variables consist of the various width ranging from 10mm to 25mm and number of CFRP sheets plied up to 5 layers. Test results indicated that maximum tensile strength and minimum coefficient of variation are recorded at each different width according to the fiber types and weaving directions. Also, the average tensile strengths of CFRP sheets are decreased as the number of layer of CFRP sheet are increased.

Evaluating the Feasibility of a Ground Source Heat pump System for an Elderly Care Center through Simulation Approach (시뮬레이션을 통한 노인 요양 시설의 지열 히트펌프 시스템 적용 가능성 평가)

  • Byonghu Sohn;Young-Sun Kim;Seung-Eon Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.39-52
    • /
    • 2023
  • This study analyzes the energy performance of a elderly care center building and the applicability of a ground source heat pump (GSHP) system through simulation approach. For this purpose, a building information modeling (BIM) program and an energy performance calculation program were used. The impact of the mechanical ventilation system on the energy requirements of the heating and cooling system and the indoor environment was also analyzed, focusing on the change in indoor carbon dioxide (CO2) concentration, which is a representative indicator of the indoor environment (air quality). The simulation results showed that the target building exceeds Level 7 in terms of simulated primary energy consumption or actual energy consumption. In addition, it was analyzed that the target building could not maintain the indoor CO2 concentration below the standard concentration by natural ventilation through window opening alone. Combining the GSHP system with the mechanical ventilation system (Case B and Case C) can further reduce the overall energy consumption by reducing the amount of outdoor air introduced by opening windows. The cost savings compared to the baseline case are estimated to be 67.3% for Case A, 63.7% for Case B, 65.5% for Case C, and 42.5% for Case D. It is necessary to analyze the impact of various renewable energy technologies and passive ones on the energy performance and indoor environment of elderly care centers.

Energy Performance and Operating Cost Assessment for Implementing Green Remodeling Technologies in a Detached House (단독주택 건물 그린리모델링에 따른 건물 에너지 성능과 운전비용 절감 효과 평가)

  • Byonghu Sohn;Su-In Lee;Jae-Sik Kang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.27-38
    • /
    • 2023
  • The Government the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of buildings and to promote green growth policy in construction sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. Green remodeling reinforced the insulation of the exterior walls and roofs of the buildings and replaced high-efficiency windows and doors. In this study, the energy performance before and after green remodeling applied in a detached house was comparatively analyzed for baseline scenario and three different ones, ALT 1, ALT 2 and ALT 3. A building modeling and simulation software (DesignBuilder V7.0) with EnergyPlus (V9.4) calculation engine was used to calculate the energy demand and energy consumption for each scenario. Based on the calculation results of the building's energy demand for baseline, it was determined that the target building required more heating energy than cooling energy. The simulation results also showed that the implementation of building envelope performance improvement technologies (ALT 1) could notably decrease the heating energy consumption of the building. After the remodeling (ALT 1), the source energy consumption per unit floor area was assessed to be reduced by 65.2%, compared to prior remodeling of 338.7 kWh/m2 -y. Meanwhile, ALT 2 can achieve energy savings of 67.7% and ALT 3 can achieve savings of 73.1%. Following completion of the remodeling project, actual construction costs, and on-site measurements and verification results will be gathered and compared with the simulation results. Additionally, economic analysis including construction costs and payback period will be conducted using actual site data.