• Title/Summary/Keyword: 연관 규칙 알고리즘

Search Result 200, Processing Time 0.026 seconds

Data Mining Techniques for Analyzing Promoter Sequences (프로모터 염기서열 분석을 위한 데이터 마이닝 기법)

  • 김정자;이도헌
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.739-744
    • /
    • 2000
  • As DNA sequences have been known through the Genome project the techniques for dealing with molecule-level gene information are being made researches briskly. It is also urgent to develop new computer algorithms for making databases and analyzing it efficiently considering the vastness of the information for known sequences. In this respect, this paper studies the association rule search algorithms for finding out the characteristics shown by means of the association between promoter sequences and genes, which is one of the important research areas in molecular biology. This paper treat biological data, while previous search algorithms used transaction data. So, we design a transformed association rule algorithm that covers data types and biological properties. These research results will contribute to reducing the time and the cost for biological experiments by minimizing their candidates.

  • PDF

HARD : Hybrid Association Rule with streaming Data (스트림 데이터의 효율적인 연관규칙 업데이트 알고리즘)

  • Kim Hyung-Ju;Choi Jae-Keol
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06c
    • /
    • pp.40-42
    • /
    • 2006
  • 스트림 데이터에 내재된 정보들은 시간이 흐름에 따라 변화의 가능성이 매우 높기 때문에 이러한 변화를 신속하게 업데이트할 수 있다면 유용한 정보를 제공할 수 있을 것이다. 그러나 스트림 데이터의 모든 연관규칙을 업데이트하는 것은 수행하는데 많은 부담이 있으므로 이 논문에서는 지지도의 변화가 큰 흥미있는(interesting)데이터에 대해서 효율적으로 업데이트 하는 방법을 제시하고자 한다.

  • PDF

An Efficient Algorithm for Mining Association Rules using a Binary Representation (이진 표현을 이용한 효율적인 연관 규칙 탐사 알고리즘)

  • Won-Young Kim;Won-Gil Choi;Ung-Mo Kim
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.375-378
    • /
    • 2008
  • 오늘날 지식을 기반으로 하는 고도의 정보사회로 나아가는 시점에서 우리는 대량의 데이터 속에서 필요한 지식을 찾아내는 것에 초점을 모으게 되었다. 따라서 대량의 데이터 속에서 필요한 지식을 자동으로 찾아내는 데이터 마이닝에 대한 연구가 활발히 진행되고 있다. 데이터 마이닝은 대용량의 데이터를 대상으로 하기 때문에 정확도뿐만이 아니라 소요시간도 중요하기 때문에 성능 향상을 위한 알고리즘들이 많이 개발되었다. 데이터 마이닝의 성능을 향상시키기 위해서 가장 좋은 방법이 데이터베이스의 스캔의 횟수를 줄이는 것이다. 본 논문에서는 연관 규칙 탐사에서 빈발 항목 집합을 찾아내는 부분을 이진 표현을 이용하여 좀 더 성능을 향상시킬 수 있는 알고리즘을 제안한다.

Generating Technology of the Association Rule for Analysis of Audit Data on Intrusion Detection (침입탐지 감사자료 분석을 위한 연관규칙 생성 기술)

  • Soh, Jin;Lee, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2002.11b
    • /
    • pp.1011-1014
    • /
    • 2002
  • 최근 대규모 네트워크 데이터에 대한 패턴을 분석하기 위한 연구에 대하여 관심을 가지고 침입탐지 시스템을 개선하기 위해 노력하고 있다. 특히, 이러한 광범위한 네트워크 데이터 중에서 침입을 목적으로 하는 데이터에 대한 탐지 능력을 개선하기 위해 먼저, 광범위한 침입항목들에 대한 탐지 적용기술을 학습하고, 그 다음에 데이터 마이닝 기법을 이용하여 침입패턴 인식능력 및 새로운 패턴을 빠르게 인지하는 적용기술을 제안하고자 한다. 침입 패턴인식을 위해 각 네트워크에 돌아다니는 관련된 패킷 정보와 호스트 세션에 기록되어진 자료를 필터링하고, 각종 로그 화일을 추출하는 프로그램들을 활용하여 침입과 일반적인 행동들을 분류하여 규칙들을 생성하였으며, 생성된 새로운 규칙과 학습된 자료를 바탕으로 침입탐지 모델을 제안하였다. 마이닝 기법으로는 학습된 항목들에 대한 연관 규칙을 찾기 위한 연역적 알고리즘을 이용하여 규칙을 생성한 사례를 보고한다. 또한, 추출 분석된 자료는 리눅스 기반의 환경 하에서 다양하게 모아진 네트워크 로그파일들을 분석하여 제안한 방법에 따라 적용한 산출물이다.

  • PDF

Mining Time Series Data With Virtual Transaction (트랜잭션이 없는 시계열 데이터로 부터 가상 트랜잭션을 이용한 데이터 마이닝)

  • Kim, Min-Soo;Lee, Joon-Sub;Kim, Ung-Mo
    • Annual Conference of KIPS
    • /
    • 2001.10a
    • /
    • pp.31-34
    • /
    • 2001
  • 대용량의 데이터들로부터 사용자가 원하는 데이터를 찾기 위하여 많은 데이터 마이닝 기술들이 연구되어 실제 응용프로그램에서 많이 적용되고 있다. 이러한 데이터 마이닝의 기술 중 연관규칙은 항목들의 집합으로 표현되는 트랜잭션에서 각 항목간의 연관성을 찾는데 사용된다. 그러나 실세계에는 트랜잭션이 없이 일련의 이벤트만 시간에 따라서 발생하는 데이터들이 많이 존재한다. 이러한 시계열 이벤트 데이터들로부터 다양한 가상 트랜잭션을 생성하는 기법들을 제시한다. 이러한 가상 트랜잭션 데이터로 변환된 시계열 데이터에 연관규칙, 순차패턴, 주기패턴과 관련된 여러 가지 알고리즘을 바로 적용 함으로서 유용한 규칙들을 발견해 낼 수 있다.

  • PDF

An Efficient Algorithm Using the locality of Data for Mining Quantitative Association Rules (수량 연관규칙 생성을 위한 데이터의 지역성을 고려한 효과적인 알고리즘 제안)

  • 이혜정;박원환;박두순
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.126-129
    • /
    • 2003
  • 최근 대용량의 데이터베이스로부터 연관규칙을 발견하여 이를 활용하는 단계에서 이러한 연관규칙을 수량항목에도 적용할 수 있도록 확장하는 연구가 소개되고 있다. 본 논문에서는 수량 항목을 이진항목으로 변환하기 위하여 빈발구간 항목집합(Large Interval Itemsets)을 생성할 때 수량 항목이 특정 영역에 집중하여 발생하거나 골고루 분포되어 있지 않은 경우, 이러한 지역성(locality)을 고려하여 빈발구간 항목집합을 생성하는 방법을 제안한다. 이 방법은 기존의 방법보다 많은 수의 세밀한 빈발구간 항목들을 생성할 수 있을 뿐만 아니라 의미 있는 구간을 중심으로 빈발구간 항목들이 순서대로 생성되기 때문에 세밀도를 판단하여 활용할 수 있으며, 원 데이터가 가지고 있는 특성의 손실을 최소화할 수 있는 특징이 있다 또한 인구센서스등 실 데이터를 사용한 성능평가를 통하여 기존의 방법보다 우수함을 보였다.

  • PDF

Implementation of Purchasing Pattern Classification System Using Neural Network and Association Rules (신경망과 연관규칙을 이용한 구매패턴 분류시스템의 구현)

  • Lee, Jong-Min;Chung, Hong;Kim, Jin-Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.530-538
    • /
    • 2003
  • Recently the needs for keeping existing customers is increasing in the field of marketing. So, the customers needs to be classified by groups and the differentiated responses to the specified customer groups are demanded. In this paper, we implemented a system that classifies the customer groups using the neural network, and classified the purchasing patterns among customer groups. Empirically examining the association rules between two groups, we could find out that similar rules exist between them. So, it is important that customers should be classified into the excellent customer group and the general group for the decision making of marketing. This paper shows that the efficiency of the differentiated marketing can be maximized by raising the correctness of the expectation in the classification of customer groups.

Development of Network Event Audit Module Using Data Mining (데이터 마이닝을 통한 네트워크 이벤트 감사 모듈 개발)

  • Han, Seak-Jae;Soh, Woo-Young
    • Convergence Security Journal
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2005
  • Network event analysis gives useful information on the network status that helps protect attacks. It involves finding sets of frequently used packet information such as IP addresses and requires real-time processing by its nature. Apriori algorithm used for data mining can be applied to find frequent item sets, but is not suitable for analyzing network events on real-time due to the high usage of CPU and memory and thus low processing speed. This paper develops a network event audit module by applying association rules to network events using a new algorithm instead of Apriori algorithm. Test results show that the application of the new algorithm gives drastically low usage of both CPU and memory for network event analysis compared with existing Apriori algorithm.

  • PDF

An Algorithm for Adaptive School Web Site Construction Using Association Rules (연관규칙을 이용한 적응형 학교 웹사이트 구축 알고리즘)

  • Lee, Jeong-Min;Jun, Woo-Chun
    • 한국정보교육학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.721-729
    • /
    • 2004
  • 최근에 학교 현장에서 제공하는 홈페이지는 학교의 정보화 능력을 가늠하는 척도가 되고 있으며 학생과 학부모 그리고 학교가 상호 의사소통 할 수 있는 좋은 장을 마련해주고 있다. 그러나 끊임없이 변화하는 학생들의 검색 패턴에 대해서 학교 홈페이지가 적절히 대처하지 못하고 있으며, 그들의 방문 목적 달성을 위한 충분한 안내를 제공함에 있어 한계를 가지고 있는 것이 사실이다. 본 논문에서는 사이트 접속자들의 행동 패턴 분석을 위해 웹서버 로그 데이터를 이용하고, 데이터 마이닝의 한 기법인 연관규칙을 적용하여 로그 데이터를 분석함으로써 사용자들의 의미 있는 행동패턴을 추출하는 알고리즘을 제안하였다. 이렇게 추출된 행동패턴을 기반으로 하이퍼링크가 자동으로 생성되어 해당 웹페이지에 삽입됨으로써 특정 개인뿐만 아니라 공통의 다수가 편리하게 이용할 수 있는 적응형 학교 웹사이트 구축 방안을 제시한다.

  • PDF

BAR: Bitmap-based Association Rule-Implementation and its Optimizations (BAR: 비트맵 기반의 연관규칙 구현 및 최적화)

  • Kim Jae-Myung;Oh Ki-Sun;Kim Dong-Hyun;Lee Sang-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.58-60
    • /
    • 2005
  • 대표적인 데이터마이닝 문제중의 하나인 연관규칙 탐사에는 지금까지 Apriori 기반의 많은 알고리즘들이 개발되어 왔다. 본 논문에서는 비트맵을 이용한 Apriori 알고리즘 구현방안을 제시한다. 우선, 핵심연산인 비트맵 논리곱(Bitmap AND)과 비트 카운팅(bit-counting)을 컴퓨터 CPU의 고급 기술을 이용해서 효과적으로 구현할 수 있음을 보인다. 또한, 트랜잭션 데이터를 비트맵으로 표현함으로써, 기존 Apriori와는 달리, 비트맵 논리곱 연산을 획기적으로 줄일 수 있는 방법을 제시한다. BAR의 이러한 구현기법을 통해, Apriori 기반의 최신 구현 방법에 비해, 성능이 최대 30배 정도 향상됨을 보인다.

  • PDF