• Title/Summary/Keyword: 연관 규칙 생성

Search Result 192, Processing Time 0.029 seconds

TF-IDF Based Association Rule Analysis System for Medical Data (의료 정보 추출을 위한 TF-IDF 기반의 연관규칙 분석 시스템)

  • Park, Hosik;Lee, Minsu;Hwang, Sungjin;Oh, Sangyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.3
    • /
    • pp.145-154
    • /
    • 2016
  • Because of the recent interest in the u-Health and development of IT technology, a need of utilizing a medical information data has been increased. Among previous studies that utilize various data mining algorithms for processing medical information data, there are studies of association rule analysis. In the studies, an association between the symptoms with specified diseases is the target to discover, however, infrequent terms which can be important information for a disease diagnosis are not considered in most cases. In this paper, we proposed a new association rule mining system considering the importance of each term using TF-IDF weight to consider infrequent but important items. In addition, the proposed system can predict candidate diagnoses from medical text records using term similarity analysis based on medical ontology.

Discovering Association Rules using Item Clustering on Frequent Pattern Network (빈발 패턴 네트워크에서 아이템 클러스터링을 통한 연관규칙 발견)

  • Oh, Kyeong-Jin;Jung, Jin-Guk;Ha, In-Ay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.1
    • /
    • pp.1-17
    • /
    • 2008
  • Data mining is defined as the process of discovering meaningful and useful pattern in large volumes of data. In particular, finding associations rules between items in a database of customer transactions has become an important thing. Some data structures and algorithms had been proposed for storing meaningful information compressed from an original database to find frequent itemsets since Apriori algorithm. Though existing method find all association rules, we must have a lot of process to analyze association rules because there are too many rules. In this paper, we propose a new data structure, called a Frequent Pattern Network (FPN), which represents items as vertices and 2-itemsets as edges of the network. In order to utilize FPN, We constitute FPN using item's frequency. And then we use a clustering method to group the vertices on the network into clusters so that the intracluster similarity is maximized and the intercluster similarity is minimized. We generate association rules based on clusters. Our experiments showed accuracy of clustering items on the network using confidence, correlation and edge weight similarity methods. And We generated association rules using clusters and compare traditional and our method. From the results, the confidence similarity had a strong influence than others on the frequent pattern network. And FPN had a flexibility to minimum support value.

  • PDF

Temporal Associative Classification based on Calendar Patterns (캘린더 패턴 기반의 시간 연관적 분류 기법)

  • Lee Heon Gyu;Noh Gi Young;Seo Sungbo;Ryu Keun Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.6
    • /
    • pp.567-584
    • /
    • 2005
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from temporal data. Association rules and classification are applied to various applications which are the typical data mining problems. However, these approaches do not consider temporal attribute and have been pursued for discovering knowledge from static data although a large proportion of data contains temporal dimension. Also, data mining researches from temporal data treat problems for discovering knowledge from data stamped with time point and adding time constraint. Therefore, these do not consider temporal semantics and temporal relationships containing data. This paper suggests that temporal associative classification technique based on temporal class association rules. This temporal classification applies rules discovered by temporal class association rules which extends existing associative classification by containing temporal dimension for generating temporal classification rules. Therefore, this technique can discover more useful knowledge in compared with typical classification techniques.

Implementation of Association Rules Creation System from GML Documents (GML 문서에서 연관규칙 생성 시스템 구현)

  • Kim, Eui-Chan;Hwang, Byung-Yeon
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.1 s.16
    • /
    • pp.27-35
    • /
    • 2006
  • As the increasing interest about geographical information, such researches and applied fields become wide. OGC(Open GIS Consortium) developed GML(Geography Markup Language) which is adopted XML(extensible Markup Language) in GIS field. In various applied field, GML is used and studied continuously. This paper try to find out the meaningful rules using Apriori algorithm from GML documents, one of the data mining techniques which is studied based on existing XML documents There are two ways to find out the rules. One is the way that find out the related rules as extracting the content in GML documents, the other find out the related rules based on used tags and attributes. This paper describes searching the rules through two ways and shows the system adopted two ways.

  • PDF

A Large-Interval Itemsets Generation Method for Mining Quantitative Association Rules (수량 연관규칙 탐사를 위한 빈발구간 항목집합 생성방법)

  • 박원환;박두순;유기형;손진곤
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.402-407
    • /
    • 2001
  • 대용량의 데이터베이스로부터 연관규칙을 발견하고자 하는 연구가 활발하며, 수량 데이터의 항복에도 적용할 수 있도록 이들 방법을 확장하는 연구가 최근에 소개되고 있다. 본 논문에서는 수량 데이터 항목을 이진 항목으로 변환하기 위하여 빈발구간 항목집합을 생성할 때, 수량 데이터 항목의 정의 영역 내에서 특정 영역에 집중하여 발생하는 특성인 지역성을 이용하는 방법을 제안한다. 이 방법은 기존의 방법보다 많은 수의 세밀한 빈발구간 항목들을 생성할 수 있을 뿐만 아니라 세밀의 정도를 판단하여 활용할 수 있는 생성순서 정보도 포함하고 있어, 원 데이터가 가지고 있는 특성의 손실을 최소화한 수 있는 특징이 있다. 성능평가를 통하여 기존의 방법보다 우수함을 보였다.

  • PDF

Association rule ranking function using conditional probability increment ratio (조건부 확률증분비를 이용한 연관성 순위 결정 함수)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.709-717
    • /
    • 2010
  • The task of association rule mining is to find certain association relationships among a set of data items in a database. There are three primary measures for association rule, support and confidence and lift. In this paper we developed a association rule ranking function using conditional probability increment ratio. We compared our function with several association rule ranking functions by some numerical examples. As the result, we knew that our decision function was better than the existing functions. The reasons were that the proposed function of the reference value is not affected by a particular association threshold, and our function had a value between -1 and 1 regardless of the range for three association thresholds. And we knew that the ranking function using conditional probability increment ratio was very well reflected in the difference between association rule measures and the minimum association rule thresholds, respectively.

Non-linear regression model considering all association thresholds for decision of association rule numbers (기본적인 연관평가기준 전부를 고려한 비선형 회귀모형에 의한 연관성 규칙 수의 결정)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.267-275
    • /
    • 2013
  • Among data mining techniques, the association rule is the most recently developed technique, and it finds the relevance between two items in a large database. And it is directly applied in the field because it clearly quantifies the relationship between two or more items. When we determine whether an association rule is meaningful, we utilize interestingness measures such as support, confidence, and lift. Interestingness measures are meaningful in that it shows the causes for pruning uninteresting rules statistically or logically. But the criteria of these measures are chosen by experiences, and the number of useful rules is hard to estimate. If too many rules are generated, we cannot effectively extract the useful rules.In this paper, we designed a variety of non-linear regression equations considering all association thresholds between the number of rules and three interestingness measures. And then we diagnosed multi-collinearity and autocorrelation problems, and used analysis of variance results and adjusted coefficients of determination for the best model through numerical experiments.

Exploration of PIM based similarity measures as association rule thresholds (확률적 흥미도를 이용한 유사성 측도의 연관성 평가 기준)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1127-1135
    • /
    • 2012
  • Association rule mining is the method to quantify the relationship between each set of items in a large database. One of the well-studied problems in data mining is exploration for association rules. There are three primary quality measures for association rule, support and confidence and lift. We generate some association rules using confidence. Confidence is the most important measure of these measures, but it is an asymmetric measure and has only positive value. Thus we can face with difficult problems in generation of association rules. In this paper we apply the similarity measures by probabilistic interestingness measure to find a solution to this problem. The comparative studies with support, two confidences, lift, and some similarity measures by probabilistic interestingness measure are shown by numerical example. As the result, we knew that the similarity measures by probabilistic interestingness measure could be seen the degree of association same as confidence. And we could confirm the direction of association because they had the sign of their values.

A study on the relatively causal strength measures in a viewpoint of interestingness measure (흥미도 측도 관점에서 상대적 인과 강도의 고찰)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • Among the techniques for analyzing big data, the association rule mining is a technique for searching for relationship between some items using various relevance evaluation criteria. This associative rule scheme is based on the direction of rule creation, and there are positive, negative, and inverse association rules. The purpose of this paper is to investigate the applicability of various types of relatively causal strength measures to the types of association rules from the point of view of interestingness measure. We also clarify the relationship between various types of confidence measures. As a result, if the rate of occurrence of the posterior item is more than 0.5, the first measure ($RCS_{IJ1}$) proposed by Good (1961) is more preferable to the first measure ($RCS_{LR1}$) proposed by Lewis (1986) because the variation of the value is larger than that of $RCS_{LR1}$, and if the ratio is less than 0.5, $RCS_{LR1}$ is more preferable to $RCS_{IJ1}$.

A study on removal of unnecessary input variables using multiple external association rule (다중외적연관성규칙을 이용한 불필요한 입력변수 제거에 관한 연구)

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.877-884
    • /
    • 2011
  • The decision tree is a representative algorithm of data mining and used in many domains such as retail target marketing, fraud detection, data reduction, variable screening, category merging, etc. This method is most useful in classification problems, and to make predictions for a target group after dividing it into several small groups. When we create a model of decision tree with a large number of input variables, we suffer difficulties in exploration and analysis of the model because of complex trees. And we can often find some association exist between input variables by external variables despite of no intrinsic association. In this paper, we study on the removal method of unnecessary input variables using multiple external association rules. And then we apply the removal method to actual data for its efficiencies.