• Title/Summary/Keyword: 연관어 분석

Search Result 220, Processing Time 0.029 seconds

A Study on Providing Relative Keyword using The Social Network Analysis Technique in Academic Database (학술DB에서 SNA(Social Network Analysis) 기법을 이용한 연관검색어 제공방안 연구)

  • Kim, Kyoung-Yong;Seo, Jung-Yun;Seon, Choong-Nyoung
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.79-82
    • /
    • 2011
  • 본 논문은 다양한 주제 분야의 연구 성과물을 제공하는 학술DB에서 주제어(Keyword) 정보를 바탕으로 SNA(Social Network Analysis)기법을 적용해 검색어와 연관도가 높은 연관검색어를 제공하는 것을 그 목적으로 한다. 이를 위해 주제어들 간의 가중치(Weight)를 계산한 뒤 Ego Network 분석을 통해 검색어와 연관된 연관주제어를 추출하고 이를 기존 학술DB에서 제공한 연관검색어와 비교 정리하였다. 그리고 정리된 결과를 연관규칙 마이닝기법, 유사계수를 적용해 연관도측면에서 비교 평가하였다.

  • PDF

Analysis and Evaluation of Term Suggestion Services of Korean Search Portals: The Case of Naver and Google Korea (검색 포털들의 검색어 추천 서비스 분석 평가: 네이버와 구글의 연관 검색어 서비스를 중심으로)

  • Park, Soyeon
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.2
    • /
    • pp.297-315
    • /
    • 2013
  • This study aims to analyze and evaluate term suggestion services of major search portals, Naver and Google Korea. In particular, this study evaluated relevance and currency of related search terms provided, and analyzed characteristics such as number and distribution of terms, and queries that did not produce terms. This study also analyzed types of terms in terms of the relationship between queries and terms, and investigated types and characteristics of harmful terms and terms with grammatical errors. Finally, Korean queries and English queries, and popular queries and academic queries were compared in terms of the amount and relevance of search terms provided. The results of this study show that the relevance and currency of Naver's related search terms are somewhat higher than those of Google. Both Naver and Google tend to add terms to or delete terms from original queries, and provide identical search terms or synonym terms rather than providing entirely new search terms. The results of this study can be implemented to the portal's effective development of term suggestion services.

ARMS : Association Rule for sMall Set (검색어의 연관법칙)

  • 문상준;최재걸
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.10-12
    • /
    • 2004
  • 검색엔진에 사용자가 입력한 검색어를 분석하면 상호 연관이 있는 검색어들을 찾아낼 수 있다. 검색어들간의 상호 연관성을 찾기 위해서 데이타 마이닝 분야의 연관법칙을 위한 알고리즘을 적용하였다. 그러나 이 알고리즘들은 모두 일정 횟수 이상 검색된 검색어간의 연관법칙에 집중되어 있어서 일정 횟수 이상 검색되지 않은 검색어들은 버려진다. 이 연구에서는 이런 검색어들을 스몰 셋(small set)이라고 정의하고 스몰 셋의 연관법칙을 찾기 위한 방법을 제시한다. 실험결과는 이 연구에 제시한 방법이 효과적으로 동작하는 것을 입증해준다.

  • PDF

Finding Correlated Keyword b Analyzing User's Implicit Feedback (사용자 선호도 분석을 통한 검색어 조합 추출)

  • Chul-Woo Shim;Eun Ju Lee;Ung-Mo Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.229-232
    • /
    • 2008
  • 웹 정보량이 급속히 늘어나면서 원하는 정보를 효율적으로 찾는 검색 기술의 중요성이 커지고 있다. 검색의 정확성을 높이기 위해서는 검색 질의어와 함께 사용자의 환경, 검색 만족도와 같은 다양한 정보가 필요하다. 사용자의 명시적 피드백을 요구하는 것은 거부감을 줄 수 있으므로 사용자의 잠재적 피드백과 연관 검색어 분석을 통해 검색 질의어를 확장하는 연구가 이뤄지고 있다. 그러나 이러한 검색어 확장과 검색 정확성 사이의 상관관계에 대한 분석이 없어 연관 검색어를 정량적으로 평가할 수 없었다. 본 논문에서는 사용자가 검색 질의어를 변경하면서 검색을 반복하는 과정을 사용자의 잠재적 피드백의 하나로 보고 사용자 만족도를 반영하는 페이지 방문 시간과 함께 분석하여 연속적으로 입력된 검색어가 검색 결과 순위와 사용자 만족도에 미치는 영향을 분석하는 방법을 제안하였다. 마우스 클릭 정보 분석을 통하여 사용자의 검색 만족도를 정량화하였고 특정 주제어에서 관련 검색어가 확장되어 가는 과정은 트리 구조로 표현하였다. 이를 통해 하나의 주제어와 관련해 연속적으로 입력된 검색어 집합으로부터 연관검색어를 추출하고 검색 결과의 정확성을 높일 수 있으며 제안된 트리 구조를 다양한 방향으로 분석하여 검색어, 검색 결과, 사용자 만족도, 배경 지식 등 단순 검색어 분석에서는 나타나지 않는 다양한 정보를 얻을 수 있다.

Analysis of drama viewership related words through unstructured data collection (비정형데이터 수집을 통한 드라마 시청률 연관어 분석)

  • Kang, Sun-Kyoung;Lee, Hyun-Chang;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1567-1574
    • /
    • 2017
  • In this paper, we analyzed the stereotyped and non - stereotyped data in order to analyze the drama 's ratings. The formalized data collection collected 19 items from the four areas of drama information, person information, broadcasting information, and audience rating information of each broadcasting company. Atypical data were collected from bulletin boards, pre - broadcast blogs and post - broadcast blogs operated by each broadcasting company using a crawling technique. As a result of comparing the differences according to the four areas for each broadcaster from the collected regular data, the results were similar to each other. And we derived seven related words by analyzing the correlation of occurrence frequencies from unstructured data collected from bulletin boards and blogs of each broadcasting company. The derived associations were obtained through reliability analysis.

Selecting a key issue through association analysis of realtime search words (실시간 검색어 연관 분석을 통한 핵심 이슈 선정)

  • Chong, Min-Yeong
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.161-169
    • /
    • 2015
  • Realtime search words of typical portal sites appear every few seconds in descending order by search frequency in order to show issues increasing rapidly in interest. However, the characteristics of realtime search words reordering within too short a time cause problems that they go over the key issues of the day. This paper proposes a method for deriving a key issue through association analysis of realtime search words. The proposed method first makes scores of realtime search words depending on the ranking and the relative interest, and derives the top 10 search words through descriptive statistics for groups. Then, it extracts association rules depending on 'support' and 'confidence', and chooses the key issue based on the results as a graph visualizing them. The results of experiments show that the key issue through association rules is more meaningful than the first realtime search word.

A Study on Creative Cognition of Language based concept Generation of Game Graphics (언어기반 게임그래픽 디자인 발상의 창의적 인지에 관한 연구)

  • Huh, Yoon-Jung
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.171-179
    • /
    • 2011
  • In this paper it is hypothesized that word stimuli that are presented by Google’s search word, would improve the quality of the design solution, so this research examines the effect of related search word stimuli in concept generation and analyzes the results through the processes of creative cognition. In the process of concept generation, words are given as stimuli which are generated through Google's related search and these search words are given by 5 levels. Google search is based on the collaboration philosophy. People's participation and contribution recreate knowledge and information, so these renewed and related search words update in real time by people are used as stimuli. Two problems are provided with related search words. After the design concept generation the results are analyzed by 3 bases: the usage of related search words and those of frequency, creativity, and Finke's 12 Geneplore model. These are the results of the research. Many levels of related search words are used in design concept generation but especially higher levels which are more related to search words are more used than lower levels. The usage of multi words and conjunction with higher levels and lower levels words are observed in creative results. On the creative cognitive processes, it is more creative when using association and mental transformation with the related search words than using the related search words simply. Creative outputs also use conceptual interpretation, functional inference, and contextual shifting of creative cognitive processes of Finke's 12 Geneplore model.

Visualizer of Associated Word by Analyzing News Articles (신문 기사 분석을 통한 연관어 비주얼라이저)

  • Kim, Hyun-Jin;Moon, Sung-Young;Jeong, Yong-Gi;Lee, Jeong-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1189-1192
    • /
    • 2013
  • 신문기사 분석을 통한 연관어 비주얼라이저는 신문 기사의 단어를 추출하여 단어 간 연관도를 분석하여 다양한 그래프로 표현하는 시스템이다. 인터넷 신문사의 뉴스 기사들을 수집하고 형태소 분석을 통해 기사별로 단어의 출현 횟수를 데이터베이스에 저장하고 단어와 단어 간의 연관성을 분석한다. 단어 간 연관성을 측정하기 위한 기준으로 두 단어 간 동일기사에 존재여부, 동일날짜에 존재여부를 이용한다. 이 값을 바탕으로 웹 페이지 상에서 다양한 그래프로 상위 연관성을 가진 단어들을 표현한다. 표현 되는 그래프는 다양한 형태의 그래프로 단어와 단어사이에 연관성을 보다 쉽게 파악 할 수 있다.

Analysis of the Spread of Non-face-to-face Educational Environment using Metaverse (메타버스를 이용한 비대면 교육환경의 확산 현황 분석)

  • Hwang, Eui-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.163-164
    • /
    • 2022
  • 본 연구는 최근 2년(2019.12.1.~2021. 11.30)간 빅카인즈를 이용하여 '메타버스 AND 비대면 교육' 키워드가 포함된 뉴스 검색 결과 1148건을 바탕으로 관계도 분석, 연관어 키워드 빈도수 및 연관어 가중치 분석을 하였다. 첫째, 관계도 분석에서 가중치 '5'로 적용한 12개의 키워드 가중치로 코로나19(64), 아바타(43), 코로나(22), 유니버스(21), 게더타운(15), 패러다임(12), 신입사원(12), 로블록스(7)로 나타났다. 둘째, 연관어 키워드 월간 빈도수로는 2019.12~ 2020.9(0건), 2020.10(1건), 2021.3(19건), 2021.4(34건), 2021.6(72건), 2021.9 (196건), 2021.11애는 233건으로 급격하게 증가하였다. 셋째 키워드와의 연관성(가중치/키워드 빈도수)으로 코로나19(113.96/515), 가상세계(67.75/ 344), 메타버스(58.36/103), 메타(49.8/5730), 가상공간(45.57/380) 순이었다. 이 분석 결과에서 위드코로나 시대의 비대면 교육으로 메타버스에 기반을 둔 가상공간 활용 교육은 더욱 증가될 것으로 예상된다.

  • PDF

Related Term Extraction with Proximity Matrix for Query Related Issue Detection using Twitter (트위터를 이용한 질의어 관련 이슈 탐지를 위한 인접도 행렬 기반 연관 어휘 추출)

  • Kim, Je-Sang;Jo, Hyo-Geun;Kim, Dong-Sung;Kim, Byeong Man;Lee, Hyun Ah
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Social network services(SNS) including Twitter and Facebook are good resources to extract various issues like public interest, trend and topic. This paper proposes a method to extract query-related issues by calculating relatedness between terms in Twitter. As a term that frequently appears near query terms should be semantically related to a query, we calculate term relatedness in retrieved documents by summing proximity that is proportional to term frequency and inversely proportional to distance between words. Then terms, relatedness of which is bigger than threshold, are extracted as query-related issues, and our system shows those issues with a connected network. By analyzing single transitions in a connected network, compound words are easily obtained.