According to recent statistics on new consumer market trends, 'alone consumption' is at the center. This study focuses on the social big data that attracts the public's opinions in that it is important for a certain social trend to comprehensively understand the various fields such as society, locality, culture, marketing, economics, and psychology that form the background for it. Therefore, we set up the linkage of 'solo consumption' and conducted research on new consumer market trends using Opinion Analisys. As a result of this trend analysis, representative keywords such as 'honbab', 'honsul' and 'honyoeng' were derived and analyzed the trend of new consumer market using this data. Alone consumption is an inevitable new consumption trend caused by demographic change after the global economic crisis. The importance as a trend reflecting this will be further strengthened. Trend analysis by social big data will help scientific and systematic business distribution strategies and planning to help make new and valuable decisions and decisions about new consumer markets.
Journal of the Korea Academia-Industrial cooperation Society
/
v.7
no.3
/
pp.358-364
/
2006
At present age, great many informations are no exaggeration to say that supply information of better quality to users depend on that grasp correctly user's query intention through internet along with fast development of internet. Therefore, this thesis suggest that generating meaning relation between keywords with that result by passing through morpheme analysis and syntactic analysis about Natural Language Query. This approach is implied more meaning relation than query by simple keyword or simple combination between keywords. Therefore, it is going to permit much more efficient information retrieval because of solving problem about existent query form, and generating query that user's query intention is reflected more correctly.
The hangul word embedding should be performed certainly process for noun extraction. Otherwise, it should be trained words that are not necessary, and it can not be derived efficient embedding results. In this paper, we propose model that can retrieve more efficiently by query language expansion using hangul word embedded, apriori, and text mining. The word embedding and apriori is a step expanding query language by extracting association words according to meaning and context for query language. The hangul text mining is a step of extracting similar answer and responding to the user using noun extraction, TF-IDF, and cosine similarity. The proposed model can improve accuracy of answer by learning the answer of specific domain and expanding high correlation query language. As future research, it needs to extract more correlation query language by analysis of user queries stored in database.
In this paper, a user search history based potential query recommendation system is proposed to enable the user of information search system to represent one's potential desire for information in terms of query and to facilitate the desired information to be searched. The proposed system has analyzed the association with the existing users's search histories based on the users' search query, and it has extracted the users's potential desire for information. The extracted potential desire for information is represented in terms of recommended query and thereby made recommendations to users. In order to analyze the effectiveness of the system proposed in this paper, we conducted behavioral experiments by using search histories of 27656. As a result of behavioral experiments, the experiment subjects were found to show a statistically significant higher level of satisfaction when using the proposed system as compared to using general search engines.
Natural language query is the best user interface for the users of web text retrieval systems. This paper proposes a retrieval system with expanded keyword from syntactically-analyzed structures of user's natural language query based on natural language processing technique. Through the steps combining or splitting the compound nouns based on syntactic tree traversal, and expanding the other-formed or shorten-formed keyword into multiple keyword, it shows that precision and correctness of the retrieval system was enhanced.
Proceedings of the Korean Society for Information Management Conference
/
2006.08a
/
pp.233-238
/
2006
본 연구에서는 단어의 의미연상을 이용하여 시소러스를 작성해봄으로써 탐색 시소러스 구축에 있어 단어연상검사법의 적용가능성을 살펴보았다. 문헌정보학 분야를 대상으로 단어연상검사를 실시한 후 자극어와 반응어간의 의미관계를 파악하고 반응어와 통제어휘를 비교 분석하였다. 실험 및 분석결과, 단어연상검사를 이용하면 다양한 연관관계 용어들을 시소러스에 포함시킬 수 있으며, 통제어휘집에 나타난 하위관계와 동등관계 용어들을 어느 정도 반영할 수 있다는 것을 확인하였다. 단어의 의미연상을 이용하여 구축된 탐색 시소러스는 정보검색환경에서 질의확장에 응용될 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2005.05a
/
pp.593-596
/
2005
데이터마이닝은 대량의 실제 데이터로부터 이전에 잘 알려지지는 않았지만 묵시적이고 잠재적으로 유용한 정보를 추출하는 작업으로, 본 논문은 최근 인문학 정보 자료가 전산화되고 있는 가운데 대량의 정보와 특정 체계를 갖춘 ‘조선왕조실록’ 전산자료를 분석하고 기존의 단순한 정보 검색이 아닌 데이터마이닝 기법을 적용한 상세하고 예측가능 한 정보자료 추출법을 제시한다. 먼저 텍스트화 되어 있는 컨텐츠를 형태소분석기법을 사용하여 색인어를 추출하고 집계를 낸다. 질의어와 유관한 색인어의 군집정도와 출현시점을 분석하는데, 사용된 마이닝 기법은 연관규칙분석과 클러스터링 분석기법이다. 최종 결과치는 기존의 인문학연구 결과물과 비교하여 그 정확도를 분석해 보인다.
Text mining is one of the branches of data mining and is used to find any meaningful information from the large amount of text. In this study, we analyzed titles and keywords of two SCI journals on rock engineering by using text mining to find major research area, trend and associations of research fields. Visualization of the results was also included for the intuitive understanding of the results. Two journals showed similar research fields but different patterns in the associations among research fields. IJRMMS showed simple network, that is one big group based on the keyword 'rock' with a few small groups. On the other hand, RMRE showed a complex network among various medium groups. Trend analysis by clustering and linear regression of keyword - year frequency matrix provided that most of the keywords increased in number as time goes by except a few descending keywords.
Journal of Korean Library and Information Science Society
/
v.50
no.1
/
pp.251-272
/
2019
This study investigated the utilization and interrelatedness of Scopus subject categories. To conduct this study, major and minor subject categories of journals listed in the 2017 Scopus index were used. The results showed varying degrees of interrelatedness of subject categories. At the major subject category level, the utilization was the highest in Medicine, while Social Sciences showed a greater degree of interrelatedness in comparison to Medicine. Yet, at the minor subject level, 2700 General Medicine was particularly dominant in terms of utilization and interrelatedness. Moreover, co-occurrences of minor subject categories showed varying degrees of interrelatedness between pairs of minor subject categories. Pairs of minor subject categories showed the following characteristics: a) two subject categories having identical or closely identical descriptions, b) two different categories having an interrelationship by subject areas, and c) one category conceptually encompassing another category. Due to varying degrees of utilization and interrelatedness among subject categories, minor subject categories that may greatly influence the major subject categories in conducting research studies should be investigated in detail.
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.873-876
/
2017
최근 정보검색의 효율성을 위해 데이터를 분석하여 해당 데이터를 가장 잘 나타내는 연관단어를 추출 및 추천하는 연구가 활발히 이루어지고 있다. 현재 관련 연구들은 출현 빈도수를 사용하는 방법이나 LDA와 같은 기계학습 기법을 활용해 데이터를 분석하여 연관단어를 생성하는 방법을 제안하고 있다. 기계학습 기법은 결과 값을 찾는데 사용되는 특징들을 전문가가 직접 설계해야 하며 좋은 결과를 내는 적절한 특징을 찾을 때까지 많은 시간이 필요하다. 또한, 파라미터들을 직접 설정해야 하므로 많은 시간과 노력을 필요로 한다는 단점을 지닌다. 이러한 기계학습 기법의 단점을 극복하기 위해 인공신경망을 다층구조로 배치하여 데이터를 분석하는 딥러닝이 최근 각광받고 있다. 본 논문에서는 기존 기계학습 기법을 사용하는 연관단어 추출연구의 한계점을 극복하기 위해 딥러닝을 활용한다. 먼저, 인공신경망 기반 단어 벡터 생성기인 Word2Vec를 사용하여 다양한 텍스트 데이터들을 학습하고 룩업 테이블을 생성한다. 그 후, 생성된 룩업 테이블을 바탕으로 인공신경망의 한 종류인 합성곱 신경망을 활용하여 사용자가 입력한 주제어와 관련된 최근 뉴스데이터를 분석한 후, 주제별 최신 연관단어를 추출하는 시스템을 제안한다. 또한 제안한 시스템을 통해 생성된 연관단어의 정확률을 측정하여 성능을 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.