• Title/Summary/Keyword: 연관규칙분석

Search Result 348, Processing Time 0.023 seconds

Recommender System using Association Rule and Collaborative Filtering (연관 규칙과 협력적 여과 방식을 이용한 추천 시스템)

  • 이기현;고병진;조근식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.05a
    • /
    • pp.265-272
    • /
    • 2002
  • 기존의 인터넷 웹사이트에서는 사용자의 만족을 극대화시키기 위하여 사용자별로 개인화 된 서비스를 제공하는 협력적 필터링 방식을 적용하고 있다 협력적 여과 기술은 비슷한 선호도를 가지는 사용자들과의 상관관계를 기반으로 취향에 맞는 아이템을 예측하여 특정 사용자에게 추천하여준다. 그러나 협력적 필터링은 추천을 받기 위해서 특정 수 이상의 아이템에 대한 평가를 요구하며, 또한 전체 사용자에 대해 단지 비슷한 선호도를 가지는 일부 사용자 정보에 의지하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 그러나 나머지 사용자 정보에도 추천을 위한 유용한 정보가 숨겨져 있다. 우리는 이러한 숨겨진 유용한 추천 정보를 발견하기 위하여 본 논문에서는 협력적 여과 방식과 함께 데이터 마이닝(Data Mining)에서 사용되는 연관 규칙(Association Rule)을 추천에 사용한다. 연관 규칙은 한 항목 그룹과 다른 항목 그룹 사이에 존재하는 연관성을 규칙(Rule)의 형태로 표현한 것이다. 이와 같이 생성된 연관 규칙은 개인 구매도 분석, 상품의 교차 매매(Cross-Marketing), 카탈로그 디자인, 염가 매출품(Loss Leader)분석, 상품 진열, 구매 성향에 따른 고객 분류 다양하게 사용되고 있다. 그러나 이런 연관 규칙은 추천 시스템에서 잘 응용되지 못하고 있는 실정이다. 본 논문에서 우리는 연관 규칙을 추천 시스템에 적용해, 항목 그룹 사이에 연관성을 유도함으로써 추천에 효율적으로 사용할 수 있음을 보였다. 즉 전체 사용자의 히스토리(History) 정보를 기반으로 아이템 사이의 연관 규칙을 유도하고 협력적 여과 방식과 함께 보조적으로 연관 규칙을 추천을 위해 사용함으로써 추천 시스템에 효율성을 높였다. 구축, 각종 전자문서 생성, 전자 결제, 온라인 보험 가입, 해운 선용품 판매 및 관련 정보 제공 등 해운 거래를 위한 종합적인 서비스가 제공되어야 한다. 이를 위해, 본문에서는 e-Marketplace의 효율적인 연계 방안에 대해 해운 관련 업종별로 제시하고 있다. 리스트 제공형, 중개형, 협력형, 보완형, 정보 연계형 등이 있는데, 이는 해운 분야에서 사이버 해운 거래가 가지는 문제점들을 보완하고 업종간 협업체제를 이루어 원활한 거래를 유도할 것이다. 그리하여 우리나라가 동북아 지역뿐만 아니라 세계적인 해운 국가 및 물류 ·정보 중심지로 성장할 수 있는 여건을 구축하는데 기여할 것이다. 나타내었다.약 1주일간의 포르말린 고정이 끝난 소장 및 대장을 부위별, 별 종양개수 및 분포를 자동영상분석기(Kontron Co. Ltd., Germany)로 분석하였다. 체의 변화, 장기무게, 사료소비량 및 마리당 종양의 개수에 대한 통계학적 유의성 검증을 위하여 Duncan's t-test로 통계처리 하였고, 종양 발생빈도에 대하여는 Likelihood ration Chi-square test로 유의성을 검증하였다. C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료만을 투여한 대조군의 대장선종의 발생률은 84%(Group 3; 21/25례)로써 I3C 100ppm 및 300ppm을 투여한 경우에 있어서는 각군 모두 60%(Group 1; 12/20 례, Group 2; 15/25 례)로 감소하는 경향을 나타내었다. 대장선종의 마리당 발생개수에 있어서는 C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료

  • PDF

POS Data Analysis System based on Association Rule Analysis (연관규칙 분석에 기초한 POS 데이터 분석 시스템)

  • Ahn, Kyung-Chan;Moon, Chang Bae;Kim, Byeong Man;Shin, Yoon Sik;Kim, HyunSoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.5
    • /
    • pp.9-17
    • /
    • 2012
  • Merchandise recommendations service based on electronic commerce has been actively studied and on service these days. By virtue of progress in IT industry, POS has been widely used even in small shops, but the merchandise recommendations service using POS has not been much facilitated compared with that of using electronic commerce. This paper proposes a merchandise recommendations service system using association analysis by applying data mining algorithm to POS sales data. This paper, also, suggests novel services such as annihilation rule and new rule, and ascending and descending rules. The analysis results are applied to the customers enabling to offer merchandise recommendations service. In addition, prompt responses against the changes in demands from customers are possible by identifying the annihilation rule and new rule, and ascending and descending rules, and providing the management with the rules as managerial decision making information.

Mining Association Rules in Multidimensional Stream Data (다차원 스트림 데이터의 연관 규칙 탐사 기법)

  • Kim, Dae-In;Park, Joon;Kim, Hong-Ki;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.765-774
    • /
    • 2006
  • An association rule discovery, a technique to analyze the stored data in databases to discover potential information, has been a popular topic in stream data system. Most of the previous researches are concerned to single stream data. However, this approach may ignore in mining to multidimensional stream data. In this paper, we study the techniques discovering the association rules to multidimensional stream data. And we propose a AR-MS method reflecting the characteristics of stream data since make the summarization information by one data scan and discovering the association rules for significant rare data that appear infrequently in the database but are highly associated with specific event. Also, AR-MS method can discover the maximal frequent item of multidimensional stream data by using the summarization information. Through analysis and experiments, we show that AR-MS method is superior to other previous methods.

Design of a Rule-Based Correlation Analyzer through Reducing Intrusion Alerts (침입경보 축약을 통한 규칙기반 연관관계 분석기 설계)

  • Lee, Seong-Ho;Kim, Min-Soo;Noh, Bong-Nam;Seo, Jung-Taek;Choi, Dae-Sik;Park, Eung-Gi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1091-1094
    • /
    • 2004
  • 전통적인 호스트 기반 침입탐지시스템과 네트워크 기반 침입탐지시스템은 각각 로그 데이터나 패킷 정보에서 단일 공격을 탐지하고 침입경보를 생성한다. 그러므로, 기존의 침입탐지시스템들은 침입경보간의 상호 연관성에 대한 정보가 부족하게 되고, 다수의 거짓 침입경보를 발생시킨다. 이를 해결하기 위해, 본 논문에서는 추론 규칙을 이용하는 침입경보 연관관계 시스템을 제안한다. 제안한 시스템은 침입경보 수집기, 침입경보 전처리기, 침입경보 연관관계 분석기로 구성되어 있다. 침입경보 수집기는 각 침입탐지시스템으로부터 필터링 과정을 거쳐 전송된 침입경보를 받아 침입경보 데이터베이스에 저장한다. 침입경보 전처리기는 불필요한 침입경보를 줄임으로써 침입경보 연관관계 분석의 효율성을 높인다. 마지막으로, 침입경보 연관관계 분석기는 추론 규칙을 이용하여 침입경보간의 상호연관성을 파악한다.

  • PDF

Comparison of confidence measures useful for classification model building (분류 모형 구축에 유용한 신뢰도 측도 간의 비교)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.365-371
    • /
    • 2014
  • Association rule of the well-studied techniques in data mining is the exploratory data analysis for understanding the relevance among the items in a huge database. This method has been used to find the relationship between each set of items based on the interestingness measures such as support, confidence, lift, similarity measures, etc. By typical association rule technique, we generate association rule that satisfy minimum support and confidence values. Support and confidence are the most frequently used, but they have the drawback that they can not determine the direction of the association because they have always positive values. In this paper, we compared support, basic confidence, and three kinds of confidence measures useful for classification model building to overcome this problem. The result confirmed that the causal confirmed confidence was the best confidence in view of the association mining because it showed more precisely the direction of association.

ANIDS(Advanced Network Based Intrusion Detection System) Design Using Association Rule Mining (연관법칙 마이닝(Association Rule Mining)을 이용한 ANIDS (Advanced Network Based IDS) 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2287-2297
    • /
    • 2007
  • The proposed ANIDS(Advanced Network Intrusion Detection System) which is network-based IDS using Association Rule Mining, collects the packets on the network, analyze the associations of the packets, generates the pattern graph by using the highly associated packets using Association Rule Mining, and detects the intrusion by using the generated pattern graph. ANIDS consists of PMM(Packet Management Module) collecting and managing packets, PGGM(Pattern Graph Generate Module) generating pattern graphs, and IDM(Intrusion Detection Module) detecting intrusions. Specially, PGGM finds the candidate packets of Association Rule large than $Sup_{min}$ using Apriori algorithm, measures the Confidence of Association Rule, and generates pattern graph of association rules large than $Conf_{min}$. ANIDS reduces the false positive by using pattern graph even before finalizing the new pattern graph, the pattern graph which is being generated is compared with the existing one stored in DB. If they are the same, we can estimate it is an intrusion. Therefore, this paper can reduce the speed of intrusion detection and the false positive and increase the detection ratio of intrusion.

Granule-based Association Rule Mining for Big Data Recommendation System (빅데이터 추천시스템을 위한 과립기반 연관규칙 마이닝)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.67-72
    • /
    • 2021
  • Association rule mining is a method of showing the relationship between patterns hidden in several tables. These days, granulation logic is used to add more detailed meaning to association rule mining. In addition, unlike the existing system that recommends using existing data, the granulation related rules can also recommend new subscribers or new products. Therefore, determining the qualitative size of the granulation of the association rule determines the performance of the recommendation system. In this paper, we propose a granulation method for subscribers and movie data using fuzzy logic and Shannon entropy concepts in order to understand the relationship to the movie evaluated by the viewers. The research is composed of two stages: 1) Identifying the size of granulation of data, which plays a decisive role in the implications of the association rules between viewers and movies; 2) Mining the association rules between viewers and movies using these granulations. We preprocessed Netflix's MovieLens data. The results of meanings of association rules and accuracy of recommendation are suggested with managerial implications in conclusion section.

A Personalization Technology Based on Neural Networks (신경망에 기반한 개인화 기술)

  • 김종수;도영아;류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.28-30
    • /
    • 2001
  • 현 인터넷상에서 취향에 맞는 항목(상품) 정보를 사용자에게 추천해 주는 개인화 기술은 대부분 특정 사용자와 유사한 선호도를 갖는 다른 사용자들의 특정 항목에 대한 선호도를 바탕으로 항목의 선호도를 추정하는 협력적 추천 기술을 적용하고 있다. 이중 최근접 이웃 방법은 적용하기가 용이한 반면 항목간의 가중치를 고려하지 못함으로써 추천의 정확도가 크게 떨어지는 문제점이 있다. 연관규칙 방법은 다른 항목에 대한 선호도 자료로부터 데이터 마이닝 기법을 적용하여 항목 선호에 대한 연관규칙을 추출하고 그 규칙을 사용하여 어떤 항목의 선호도를 추정한다. 따라서 항목들 간의 중요도가 연관규칙의 지지도나 신뢰도 등으로 나타난다고 할 수 있으나, 단순히 항목들간의 연관관계 즉 표면적인 연관관계에 의하여 선호도를 결정함으로써 항목들간의 어떤 내용적인 공통성 또는 어떤 상위개념에 의한 선호도가 고려되지 않음으로써 역시 정확도가 떨어지는 문제점이 있다. 본 논문에서는 추천의 정확도를 향상시키기 위한 신경망 추천 방법에 대해 분석하고, 내용기반 추천과 협력적 추천을 병합한 신경망 추천 방법을 제안한다. 또한, 다른 협력적 추천 방법과의 비교를 통하여 본 추천 방법의 장점과 성능의 우수함을 보인다.

  • PDF

Visual Exploration based Approach for Extracting the Interesting Association Rules (유용한 연관 규칙 추출을 위한 시각적 탐색 기반 접근법)

  • Kim, Jun-Woo;Kang, Hyun-Kyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.177-187
    • /
    • 2013
  • Association rule mining is a popular data mining technique with a wide range of application domains, and aims to extract the cause-and-effect relations between the discrete items included in transaction data. However, analysts sometimes have trouble in interpreting and using the plethora of association rules extracted from a large amount of data. To address this problem, this paper aims to propose a novel approach called HTM for extracting the interesting association rules from given transaction data. The HTM approach consists of three main steps, hierarchical clustering, table-view, and mosaic plot, and each step provides the analysts with appropriate visual representation. For illustration, we applied our approach for analyzing the mass health examination data, and the result of this experiment reveals that the HTM approach help the analysts to find the interesting association rules in more effective way.

An Efficient Data Mining Algorithm For An Association Rule Discovery (연관성규칙 발견을 위한 데이터마이닝 알고리즘 설계)

  • 이해각
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.587-591
    • /
    • 2004
  • 수많은 데이터로부터 우리가 이용할 수 있는 의미 있는 연관성 규칙을 찾는 것은 대단히 중요하다. 연관성 규칙은 데이터베이스의 각 트랜잭션을 분석하여 이에 대한 각종 측정치를 수집하여 이루어지는데 대단히 많은 시간과 노력을 요한다. 본 논문에서는 통계적 추론을 이용하여 탐색도중 주어진 조건을 만족하는 항목에 대하여 의사결정을 내려 탐색시간은 단축할 수 있는 알고리즘을 제안한다. 또한 추론에 따른 오류발생을 최소화 할 수 있는 기법을 제시한다.

  • PDF