• Title/Summary/Keyword: 역학적 강도

Search Result 1,470, Processing Time 0.024 seconds

Effect of Waste Glass Fine Aggregate on Mechanical Properites and Alkali-Silica Reaction(ASR), After ASR Residual Mechanical Properties of High Strength Mortar (폐유리 잔골재가 고강도 모르타르의 역학적 특성 및 알칼리-실리카 반응(ASR), ASR 후, 잔류 역학적 특성에 미치는 영향)

  • Eu, Ha-Min;Kim, Gyu-Yong;Son, Min-Jae;Sasui, Sasui;Lee, Yae-Chan;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.31-32
    • /
    • 2020
  • This study measured the mechanical performance and residual strength of high strength/normal strength mortar mixed with waste glass fine aggregate after alkali-silica reaction and alkali-silica reaction. As a result, the effect of improving the slip phenomenon of the waste glass fine aggregate in the high-strength mortar was not significant, but rather the amount of ASR was increased.

  • PDF

Mechanical Properties of Recycled Aggregate Concrete Containing Fly Ash (순환골재를 이용한 플라이애시 콘크리트의 역학적 특성)

  • Yang, In-Hwan;Jeon, Byeong-Gwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.144-151
    • /
    • 2017
  • The mechanical properties such as compressive strength and elastic modulus of recycled aggregate concrete containing fly ash are investigated in this study. The experimental parameters were replacement ratio of recycled coarse aggregate(RCA) and fly ash. Replacement ratio of RCA was 0, 30, 50, and 70% and replacement ratio of fly ash was 0, 15, 30%. The experimental results were extensively discussed about compressive strength and elastic modulus of concrete at ages of 7, 28 and 91 days. Compared with concrete not containing fly ash, the decrease of compressive strength and elastic modulus of concrete containing fly ash with the replacement ratio of 30% was significant. Therefore, the test results represented that the fly ash replacement ratio of less than 30% was favorable in terms of mechanical properties of recycled coarse aggregate concrete.

Structural Capacity of Water Channel Fabricated of Blast Furnace Slag Concrete (고로슬래그를 혼입한 콘크리트 수로관의 구조 성능)

  • Yoo, Sung-Won;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.446-453
    • /
    • 2016
  • Structural capacity of water channel fabricated of concrete including blast furnace slag were investigated in this paper. An experimental study was consisted of materials test and structural test of concrete water channel. The mechanical properties of concrete including blast furnace slag were investigated. Ordinary Portland cement (OPC) was used as basic binder and the effect of the replacement of blast furnace slag for OPC was investigated. Experiments were performed to measure mechanical properties including compressive strength, elastic modulus and modulus of rupture. Test results show that the compressive strengths and modulus of ruptures of mixtures containing blast furnace slag were equivalent to those of OPC concrete. In addition, the structural capacity of concrete water channel with up to the replacement ratio of blast furnace slag of 45% was greater than the required strength in KS specification.

Strength of CNT Cement Composites with Different Types of Surfactants and Doses (분산제의 종류 및 사용량에 따른 CNT 보강 시멘트 복합체의 강도변화)

  • Ha, Sung-Jin;Kang, Su-Tae;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.99-107
    • /
    • 2015
  • This study was aimed to investigate the difference in strength of Carbon Nanotube (CNT) reinforced cement mortars with different types of surfactants and doses. In the experimental program, CTAB, SDBS and TX10 which were common surfactants adopted to improve CNTs dispersion in fabricating CNT composites in many industrial fields were included and superplasticizer which was revealed to be effective to disperse CNTs especially in CNT reinforced cementitious composites were added as well. Superplasticizer presented less strength reduction in cement mortar and more strength gain by adding CNTs among four types of surfactants. Higher dosage of superplasticizer caused lower strength of cement mortar. Adding CNTs of 0.4 wt.% or less to cement didn't show strength enhancement by adding CNTs but 0.8 wt.% of CNTs resulted in strengthening effect after all. Finally, a combination of 0.1 wt.% of CNTs, superplasticizer and sonication treatment could lead to strength improvement by adding CNTs in cement mortar.

An Experimental Study of Mechanical Properties of High-strength Concrete (고강도 콘크리트의 역학적 특성에 대한 실험 연구)

  • Yang, In-Hwan;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.206-215
    • /
    • 2017
  • An experimental program was carried out to investigate the mechanical properties of high-strength concrete. High-strength concrete with compressive strengths of 80 to 120 MPa was tested. Test results are presented regarding effect of water-binder ratio on compressive strength and compressive strength gain. In addition, the effect of curing methods on compressive strength, elastic modulus, splitting tensile strength, and modulus of rupture is investigated. Test results of elastic modulus, splitting tensile strength, and modulus of rupture are compared with predictions from the current design recommendations. Predictions of elastic modulus by using KCI recommendation has good agreement with test results. However, predictions of modulus of rupture by using KCI recommendation underestimate the test results. ACI 363R recommendations predict well test results of splitting tensile strength and modulus of rupture. ACI 363R recommendations for predicting splitting tensile strength and modulus of rupture can be used for high-strength concrete with compressive strengths up to 120 MPa.

A Study on Evaluating the Compressive Strength Development of Concrete Mixed with Non-sintered Hwangto Admixture by an Ultrasonic Method (비소성 황토 결합재를 혼합한 콘크리트의 강도 발현 평가를 위한 초음파 속도법의 검토)

  • Kim, Jeong-Wook;Kim, Won-Chang;Kim, Gyu-Yong;Lee, Tae-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • In this study, the mechanical properties of concrete mixed with non-sintered hwangto(NHT) as an alternate material for cement were evaluated, and the compressive strength prediction equation of concrete based on ultrasonic pulse velocity analysis was proposed. Cement replacement rates for mixed NHT were set to 0, 15, and 30%, and design compressive strength was set to 30 and 45MPa to evaluate the effect on the amount of cement and NHT powder. The mechanical properties items analyzed were compressive strength, ultrasonic pulse velocity, and elastic modulus, and were measured on days 1, 3, 7, and 28. As the replacement rate of NHT increased, the mechanical properties tended to decrease. In addition, as a result of analyzing the correlation between compressive strength and ultrasonic pulse velocity, the correlation coefficient(R2) showed a high relationship(R2=0.95) on concrete mixed with NHT.

Mechanical Properties of Lightweight Foamed Concrete Using Polymer Foam Agent (고분자 기포제를 이용한 경량 기포 콘크리트의 역학적 특성 (II))

  • 박상순;송하원;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.173-181
    • /
    • 1997
  • The objective of this study is to obtain the mechanical characteristics of prefoarmed lightweight foamed concrete using the polymer ham agent which has high lightness. flowability and strength. For this purpose, the prefoarmed lightweight foamed concrete which was developed to have flow value over 180mm. unit weight between 0.38t/$m^3$ and 0.64t/$m^3$, and compressive strength about 30kg/$cm^2$ was used. This paper presents extensive test data on Young's modulus. Poisson's ratio, stress-strain curve, the characteristics of strength of the foamed concrete and also presents the mechanical characteristics of the foamed concrete with different foam sizes. It is expected that this study provides an importance guide to design and manufacture lightweight foam concrete, so that it helps to expand its structural use.

Evaluation of Reproducibility for Mechanical Properties of Lightweight Concrete using Bottom Ash Aggregates and Foam (바텀애시 골재와 기포를 이용한 경량 콘크리트의 역학적 특성에 대한 재현성 평가)

  • Ji, Gu-Bae;Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.202-209
    • /
    • 2019
  • The objective of this study is to examine the reproducibility for compressive strength development and mechanical properties of lightweight concrete made using bottom ash aggregates and foam(LWC-BF). Based on the mix proportions conducted by Ji et al., six identical mixes were prepared with different actual foam volume ratios from 0% to 25% and water-to-binder ratios from 25% to 30%. The presently measured properties, including initial slump, slurry density, compressive strength gains at different ages, splitting tensile strength, and modulus of rupture, were very close to those determined in the previous tests by Ji et al. Thus, the developed LWC-BF has a good potential in obtaining a reproducibility for compressive strength development and mechanical properties even though the troubles of mixing control owing to the addition of preformed foam.

An experimental study on mechanical behavior of shield segment with high-strength concrete and high-tension rebar (고강도 콘크리트와 고장력 철근을 적용한 쉴드 세그먼트의 역학적 거동에 대한 실험적 연구)

  • Lee, Gyu-Phil;Park, Young-Taek;Choi, Soon-Wook;Bae, Gyu-Jin;Chang, Soo-Ho;Kang, Tae-Sung;Lee, Jin-Seop
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.215-230
    • /
    • 2012
  • An experimental research on the possibility of using high-strength concrete with the design strength of 60 MPa and high-tension rebar with the yielding strength of 600 MPa instead of conventional reinforced concrete segment to reduce its production cost was performed. Full-scale bending tests on both conventional and high-strength reinforced concrete segments were carried out to compare their mechanical and structural behaviors of the segments under flexural action. From the experiments, it was shown that the failure load of high-strength reinforced concrete segment was approximately 30% higher than that of the conventional segment even though reinforcements in high-strength segment were reduced by 26%. The test result showed that the bearing capacity of high-strength segment highly increased by high-strength concrete and high-tension rebar. It also verified the high possibility of high-strength reinforced concrete segment as a technical alternative to reduce the production cost of segments in a shield tunnel.

Mechanical Properties of External Thermal Insulation Composite System with Quasi-Non-Combustible Performance (준불연 외단열시스템의 역학적 특성에 관한 연구)

  • Choi, Ki-Sun;Ha, Soo-Kyung;Oh, Keun-Yeong;Park, Keum-Sung;Ryu, Hwa-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.507-518
    • /
    • 2021
  • The application of an adhesive calcium carbonate-based hybrid insulation board with quasi-combustibility in the external thermal insulation composite system(ETICS) ensures effective thermal performance and fire safety. This study aimed to conduct a mechanical test of the quasi-non-combustible hybrid insulation board as well as its constituent materials to obtain the basic data for the structural design of the adhesive ETICS. Test specimens were fabricated based on domestic and foreign test standards to examine and evaluate their tensile, compressive, flexural, and shear strengths. The strength characteristics of the quasi-non-combustible hybrid insulation board were identified from the test results, which verified that the minimum required physical properties suggested by the current KS M ISO 4898 were met. Furthermore, the quasi-non-combustible ETICS used in this study was found to be suitable for use as an external insulation system for walls unless subjected to continuous gravity load, such as a heavy exterior finish.