• Title/Summary/Keyword: 역학물성

Search Result 463, Processing Time 0.03 seconds

Rock Mass Stability of the Buddha Statue on a Rock Cliff using Fracture Characteristics and Geological Face-Mapping (마애불 암반의 단열특성과 지질맵핑을 이용한 안정성 해석)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.539-544
    • /
    • 2023
  • The subject of this study is the Maae Buddha statue in granodiorite of the Mesozoic Cretaceous period, which is concerned about stability as a standing stone cultural property located in ◯◯-dong, Gyeongsangbuk-do. For stability analysis, three-dimensional face mapping, geological properties of joints, three-dimensional scanning, ultrasonic velocity, polarization microscopy, electron microscopy analysis and XRD analysis were performed. In addition, the safety factor of the Maaebul was calculated by analyzing the damage status investigation, stereographic projection analysis, rock classification, and limit equilibrium analysis. The types and scales of damage and possible collapse by section depend on the degree of weathering of the rock and the orientation and characteristics of the joints, but wedge-failure and toppling-failure are expected to be small-scale. The safety factor of Maaebul in dry and wet conditions is less than 1.2, so stability is concerned. The types of damage were mainly observed, such as exfoliation, cracking, granular decomposition, and vegetation growth. The Maaebul rock is granodiorite, and the surface discoloration materials are K, Fe, and Mg. The 4 sets of joints are developed, J1 is tensile joint and the others are shear joint. The uniaxial compressive strength estimated by ultrasonic exploration is 514kgf/cm2, which corresponds to most soft rocks and some weathered rocks. Rock classification(RMR) is estimated to be grade 5, very poor rock mass. These technique along with the existing methods of safety diagnosis of cultural properties are expected to be a reasonable tool for objective interpretation and stability review of stone cultural properties.

Estimation of Ultimate Lateral Resistances of Piles Using CPT Cone Resistance in Sand (사질토지반에서 콘관입저항치 $q_c$에 의한 단말뚝의 극한수평단위지지력 평가)

  • Kim, Min-Kee;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.71-77
    • /
    • 2008
  • In this study, CPT-based methodology for estimating the ultimate lateral resistance, $p_u$, is proposed and verified for lateral loaded piles in sandy soil. Preexistent methods estimating the ultimate lateral resistance, $p_u$, and the ultimate lateral capacity, $H_u$, of pile have been based on the vertical effective stress, relative density, and the coefficient of lateral earth pressure. Similarly, cone resistance $q_c$ in pure sandy soil is expressed by those essential factors. As correlation between $p_u$ and $q_c$ are normalized with average effective stress ${\sigma}_m$, estimation methodology for the lateral loaded pile of $p_u$ in sandy soil is proposed. The method is verified by calibration chamber test results in pure sand. The standard derivation of estimated $p_u$ is 0.279, and COV (Coefficient Of Variation) of estimated $p_u$ is 0.272. These results showed that the estimated pus by the method are analogous with the measured $p_us$ in calibration chamber test.

Physical Properties of Photosynthetic Cyanobacteria Applied Porous Concrete by CO2 Sequestration (광합성 남세균을 도포한 투수 콘크리트의 이산화탄소 고정에 의한 물성 변화)

  • Indong Jang;Namkon Lee;Jung-Jun Park;Jong-Won Kwark;Hoon Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.416-424
    • /
    • 2023
  • Concrete emits a large amount of carbon dioxide throughout its life cycle, and due to the societal demand for carbon dioxide reduction, research on storing carbon dioxide in concrete in the form of minerals is ongoing. In this study, cyanobacteria, which absorb carbon dioxide through photosynthesis and fix it as calcium carbonate, were applied to a porous concrete substrate, and the changes in the properties of the concrete substrate due to their special environmental curing condition were analyzed. The results showed that the calcium carbonate precipitation by the microorganisms was concentrated in the light-exposed surface area, and most of the precipitation occurred in the cement paste part, not in the aggregate. This microbially induced calcium carbonate precipitation enhanced the mechanical performance of the paste and improved the overall compressive strength as the curing age progressed. In addition, the increase in microbial biofilm and calcium carbonate improved the pore structure, which influenced the reduction in water permeability.

Experimental Study on the Application of Ceramic Friction Materials for Bridge Bearing (교량받침용 세라믹 마찰재 적용을 위한 실험적 연구)

  • Ji-Hun Park;Jung-Woo Lee;Jong-Won Kwark
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.527-534
    • /
    • 2023
  • This paper conducted a study on the application of ceramic materials for bridge bearing that can complement the durability of PTFE, a conventional bridge bearing friction material, and exhibit low coefficient of friction and friction behavior without lubricant. The ceramic material was zirconia (ZrO2), and the friction behavior was evaluated according to the roughness coefficient. The roughness coefficient was divided into 0.8 and 0.027, and the average coefficient of friction was calculated to be 0.16 under 15 MPa surface pressure. Afterward, ceramic was made into friction material and applied to the bridge bearing, and performance comparison with PTFE bridge bearing was conducted through compression test and friction test. In the compression test, the ceramic and PTFE bridge bearing showed ideal compression behavior depending on the load. No fractures or defects were observed in the ceramic bridg bearing, but lubricant loss was observed in the PTFE bridge bearing. The average coefficient of friction of the ceramic bridge bearing analyzed through friction behavior was 0.16. The inherent material properties of the physical and chemical properties of ceramics, the excellent mechanical properties derived from the performance evaluation, and the coefficient of friction of 0.16 suggest that it can be considered as a friction material.

The Influence of Acrylic Resin Solution Concentration on Properties of Recycled Fine Aggregate (아크릴 수지 농도 차이가 순환잔골재의 물성에 미치는 영향)

  • Kkot-Nim Park;Ji-Hyun Kim;Chul-Woo Chung;Young-Chan Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.188-195
    • /
    • 2024
  • Recently, the use of recycled aggregates from construction waste has been introduced as a solution for environmental problems and aggregate shortage. In spite of the various methods to promote recycling of recycled aggregate, the use of recycled aggregate as the structural aggregate has been limited because the quality of recycled aggregate(especially recycled fine aggregate) has been considered lower than that of natural aggregate. In this work, recycled fine aggregate was immersed for an hour in acrylic resin solutions of various concentrations to improve its quality, the appropriate immersion concentration was selected by measuring the absorption capacity and skeletal density of the recycled fine aggregate, and mortar specimens were prepared to evaluate the mechanical performance in order to propose a applicable treatment process to promote the use of recycled fine aggregate. According to the experimental results, as the acrylic resin concentration increased, the absorption capacity and skeletal density of the recycled fine aggregate decreased. The absorption capacity was lowest at acrylic resin concentrations around 6 to 8 %. However, among mortar specimens made of recycled fine aggregate immersed in acrylic resin solution, the compressive strength was the highest at 4 % acrylic resin concentration, suggesting that the use of higher concentration acrylic resin solution can actually lower the compressive strength of mortar.

Numerical study on evaluation of grout diffusion range by the conditions of steel pipe reinforced grouting method (강관보강그라우팅 주입 조건에 따른 그라우트 확산 범위 평가에 관한 수치해석적 연구)

  • Jun-Beom An;Gye-Chun Cho;Yuna Lee;Jaewon Lee;Kyeongnam Min;Gukje Jo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.345-363
    • /
    • 2024
  • Steel pipe reinforced grouting method has been widely used to strengthen the crown of tunnel face and prevent groundwater leakage during tunnel excavation. Various injection procedures without sealing have recently been suggested to enhance efficiency. There are two representative injection methods. One is simultaneous injection in segmented batches, and the other is multiple injection using the external packer. The pros and cons of each method were discussed in terms of construction duration and equipment. However, it has yet to be discussed how the injection procedure affects the grout diffusion range in the ground. This study aims to evaluate the grout diffusion range quantitatively by considering the practical grouting sequences. The grout viscosity was measured by laboratory testing. Then, the numerical modeling was structured using the commercial computational fluid dynamics software. Finally, the grout diffusion range affected by the injection procedure and ground conditions was evaluated by performing the numerical parametric study. The results showed that the injection method highly affected the grout diffusion range, especially for inhomogeneous soil. Consequently, it is anticipated that the proper method of steel pipe reinforced grouting will be suggested.

$CO_2$ Transport for CCS Application in Republic of Korea (이산화탄소 포집 및 저장 실용화를 위한 대한민국에서의 이산화탄소 수송)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.18-29
    • /
    • 2010
  • Offshore subsurface storage of $CO_2$ is regarded as one of the most promising options to response severe climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the offshore subsurface geological structure such as the depleted gas reservoir and deep sea saline aquifer. Since 2005, we have developed relevant technologies for marine geological storage of $CO_2$. Those technologies include possible storage site surveys and basic designs for $CO_2$ transport and storage processes. To design a reliable $CO_2$ marine geological storage system, we devised a hypothetical scenario and used a numerical simulation tool to study its detailed processes. The process of transport $CO_2$ from the onshore capture sites to the offshore storage sites can be simulated with a thermodynamic equation of state. Before going to main calculation of process design, we compared and analyzed the relevant equation of states. To evaluate the predictive accuracies of the examined equation of states, we compare the results of numerical calculations with experimental reference data. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_{2}O$, $SO_{\chi}$, $H_{2}S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. This paper analyzes the major design parameters that are useful for constructing onshore and offshore $CO_2$ transport systems. On the basis of a parametric study of the hypothetical scenario, we suggest relevant variation ranges for the design parameters, particularly the flow rate, diameter, temperature, and pressure.

ANC Caching Technique for Replacement of Execution Code on Active Network Environment (액티브 네트워크 환경에서 실행 코드 교체를 위한 ANC 캐싱 기법)

  • Jang Chang-bok;Lee Moo-Hun;Cho Sung-Hoon;Choi Eui-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9B
    • /
    • pp.610-618
    • /
    • 2005
  • As developed Internet and Computer Capability, Many Users take the many information through the network. So requirement of User that use to network was rapidly increased and become various. But it spend much time to accept user requirement on current network, so studied such as Active network for solved it. This Active node on Active network have the capability that stored and processed execution code aside from capability of forwarding packet on current network. So required execution code for executed packet arrived in active node, if execution code should not be in active node, have to take by request previous Action node and Code Server to it. But if this execution code take from previous active node and Code Server, bring to time delay by transport execution code and increased traffic of network and execution time. So, As used execution code stored in cache on active node, it need to increase execution time and decreased number of request. So, our paper suggest ANC caching technique that able to decrease number of execution code request and time of execution code by efficiently store execution code to active node. ANC caching technique may decrease the network traffic and execution time of code, to decrease request of execution code from previous active node.

Design and Optimization of Pilot-Scale Bunsen Process in Sulfur-Iodine (SI) Cycle for Hydrogen Production (수소 생산을 위한 Sulfur-Iodine Cycle 분젠반응의 Pilot-Scale 공정 모델 개발 및 공정 최적화)

  • Park, Junkyu;Nam, KiJeon;Heo, SungKu;Lee, Jonggyu;Lee, In-Beum;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.235-247
    • /
    • 2020
  • Simulation study and validation on 50 L/hr pilot-scale Bunsen process was carried out in order to investigate thermodynamics parameters, suitable reactor type, separator configuration, and the optimal conditions of reactors and separation. Sulfur-Iodine is thermochemical process using iodine and sulfur compounds for producing hydrogen from decomposition of water as net reaction. Understanding in phase separation and reaction of Bunsen Process is crucial since Bunsen Process acts as an intermediate process among three reactions. Electrolyte Non-Random Two-Liquid model is implemented in simulation as thermodynamic model. The simulation results are validated with the thermodynamic parameters and the 50 L/hr pilot-scale experimental data. The SO2 conversions of PFR and CSTR were compared as varying the temperature and reactor volume in order to investigate suitable type of reactor. Impurities in H2SO4 phase and HIX phase were investigated for 3-phase separator (vapor-liquid-liquid) and two 2-phase separators (vapor-liquid & liquid-liquid) in order to select separation configuration with better performance. The process optimization on reactor and phase separator is carried out to find the operating conditions and feed conditions that can reach the maximum SO2 conversion and the minimum H2SO4 impurities in HIX phase. For reactor optimization, the maximum 98% SO2 conversion was obtained with fixed iodine and water inlet flow rate when the diameter and length of PFR reactor are 0.20 m and 7.6m. Inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion with fixed temperature and PFR size (diameter: 3/8", length:3 m). When temperature (121℃) and PFR size (diameter: 0.2, length:7.6 m) are applied to the feed composition optimization, inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion.

Properties of Indigenous Korean Paper(Hanji) - Classification of Oebal(single frame)Papermaking Methods - (토착한지의 특성 - 외발 초지법 분류를 중심으로 -)

  • Cheon, Cheol;Kim, Seong-Ju;Jin, Young-Mun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.88-104
    • /
    • 1999
  • This study was carried out to classify the Hanjis into three groups that were indigenous Hanji, traditional Hanji, and improved Hanji handmade by paper making method according to the physical properties of each paper sheet such as tensile, bursting and tearing strength, folding endurance and fiber orientation in each layer. The results obtained were summarized as follows: 1. The multi-layered Hanjis made by "Oebal" Hanji making method in different direction of fiber orientation have good properties in tearing resistance. 2. The multi-layered Hanji in different direction of fiber orientation has good properties in the tearing resistance, but the burst index and the breaking length results were lower than the single layered Hanjis. 3. The different fiber orientation and multi-layered method didn't increase, the three indexes(burst index, tear index, breaking length). Only, the different direction of fiber orientation decreased the difference of width and length strength (tensile, tear) of the Hanji. 4. "Dochim"(Korean finishing touch process for indigenous Hanji by fulling round sticks) greatly increase folding endurance(double folds, not $log_{10}$) and good effect to tensile strength and burst strength. 5. The today's Oebal Hanji were the maximum of 2 layers and the indigenous Oebal Hanji were 16 layers the maximum. In addition, average of the indigenous Oebal Hanji was 4 layers(all 4-layer Hanji were the different fiber orientation of each layer). 6, The indigenous Hanji(multi-layered, and different fiber orientation) was good condition with "Dochim". Dochim increased tensile strength and burst strength of the indigenous Hanji. So the three-strength indexes were similar level("--"). 7. When the number of layer which were same fiber orientation increase, the increased Hanji became similar strength pattern("V", breaking length and burst index was higher than tear index) with "Ssangbal" Hanji. 8. The single layered papers that made by "Oebal" Hanji making method were similar strength pattern with Ssangbal Hanji. 9. There was no way to find the width and length direction of multi-layered Hanji by comparison between the difference of tensile strength and the difference of tearing resistance. 10. The compared pattern of tensile strength and tearing resistance of indigenous Oebal Hanji was different from today's Oebal Hanji. Especially, the tearing resistance of all indigenous Oebal Hanji(16 samples) was stronger on width of tearing resistance. And in the half of indigenous Oebal Hanji samples, the width of tensile strength and tearing resistance was stronger than length strength (Indigenous Oebal: '$\ulcorner\lrcorner$' 50%, '$\bigcup$' 50% $\leftrightarrow$ Today's Oebal: '$\ulcorner\lrcorner$' 12%, '$\bigcup$'6%, '$\llcorner\urcorner$'17%, '$\bigcap$'65%). In 65% today's Oebal, the length direction of tensile strength and tearing resistance was stronger than the width direction.

  • PDF