• Title/Summary/Keyword: 역전파신경회로망

Search Result 158, Processing Time 0.036 seconds

Genetic Algorithm based Neural Network and Temporal Difference Learning: Janggi Board Game (유전자기반 신경회로망과 Temporal Difference학습: 장기보드게임)

  • 박인규
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.308-314
    • /
    • 2002
  • 본 논문은 2인용 보드게임의 정보에 대한 전략을 학습할 수 있는 방법을 유전자기반 역전파 신경회로망과 Temporal Difference학습알고리즘을 이용하여 제안하였다. 학습의 과정은 역전파에 의한 초기학습에 이어 국부해의 단점을 극복하기 위하여 미세학습으로 유전자알고리즘을 이용하였다. 시스템의 구성은 탐색을 담당하는 부분과 기물의 수를 발생하는 부분으로 구성되어 있다. 수의 발생부분은 보드의 상태에 따라서 갱신되고, 탐색커널은 αβ탐색을 기본으로 유전자알고리즘을 이용하여 가중치를 최적화하는 유전자기반 역전파 신경회로망과 TD학습을 결합하여 게임에 대해 양호한 평가함수를 학습하였다. 일반적으로 많은 학습을 통하여 평가함수의 정확도가 보장되면 승률이 학습의 양에 비례함을 알 수 있었다.

  • PDF

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • Kim, Yong-Su
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates (비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델)

  • Kim Yong-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.101-105
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning Vector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 LVQ 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기본의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

  • PDF

Comparison of Different Schemes for Speed Sensorless Control of Induction Motor Drives by Neural Network (신경회로망을 이용한 유도전동기의 속도 센서리스 방식에 대한 비교)

  • 국윤상;김윤호;최원범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • 일반적으로 시스템 인식과 제어에 이용하는 다층 신경회로망은 기존의 역전파 알고리즘을 이용한다. 그러나 결선강도에 대한 오차의 기울기를 구하는 방법이기 때문에 국부적 최소점에 빠지기 쉽고, 수렴속도가 매우 늦으며 초기 결선강도 값들이나 학습계수에 민감하게 반응한다. 이와 같은 단점을 개선하기 위하여 확장된 칼만 필터링 기법을 역전파 알고리즘에 결합하였으나 계산상의 복잡성 때문에 망의 크기가 증가하면 실제 적용할 수 없다. 최근 신경회로망을 선형과 비선형 구간으로 구분하고 칼만 필터링 기법을 도입하여 수렴속도를 빠르게 하고 초기 결선강도 값에 크게 영향을 받지 않도록 개선하였으나, 여전히 은닉층의 선형 오차값을 역전파 알고리즘에 의해서 계산하기 때문에 학습계수에 민감하다는 단점이 있다. 본 논문에서는 위에서 언급한 기존의 신경회로망 알고리즘의 문제점을 개선하기 위하여 은닉층의 목표값을 최적기법에 의하여 직접계산하고 각각의 결선강도 값은 반복최소 자승법으로 온라인 학습하는 알고리즘을 제안하고 이들 신경회로망 알고리즘과 비교하고자 한다. 여러 가지 시뮬레이션과 실험을 통하여 제안된 방법이 초기 결선강도에 크게 영향을 받지 않으며, 기존의 학습계수 선정에 따른 문제점을 해결함으로써 신경회로망 모델에 기초한 실시간 제어기 설계에 응용할 수 있도록 하였다. 또한, 유도전동기의 속도추정과 제어에 적용하여 좋은 결과를 보였다.

  • PDF

Nonlinear mappings of interval vectors by neural networks (신경회로망에 의한 구간 벡터의 비선형 사상)

  • 권기택;배철수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.2119-2132
    • /
    • 1996
  • This paper proposes four approaches for approximately realizing nonlinear mappling of interval vectors by neural networks. In the proposed approaches, training data for the learning of neural networks are the paris of interval input vectors and interval target output vectors. The first approach is a direct application of the standard BP (Back-Propagation) algorithm with a pre-processed training data. The second approach is an application of the two BP algorithms. The third approach is an extension of the BP algorithm to the case of interval input-output data. The last approach is an extension of the third approach to neural network with interval weights and interval biases. These approaches are compared with one another by computer simulations.

  • PDF

Fuzzy Neural Network Model Using A Learning Rule Considering the Distance Between Classes (클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델)

  • Kim Yong-Su;Baek Yong-Seon;Lee Se-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.109-112
    • /
    • 2006
  • 본 논문은 클래스들의 대표값들과 입력 벡터와의 거리를 사용한 새로운 퍼지 학습법칙을 제안한다. 이 새로운 퍼지 학습을 supervised IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 이 새로운 신경회로망은 안정성을 유지하면서도 유연성을 가지고 있다. iris 데이터를 사용하여 테스트한 결과 supervised IAFC 신경회로망 4는 오류 역전파 신경회로망과 LVQ 알고리즘보다 성능이 우수하였다.

  • PDF

Adaptive controls for non-linear plant using neural network (신경회로망을 이용한 비선형 플랜트의 적응제어)

  • 정대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.215-218
    • /
    • 1997
  • A dynamic back-propagation neural network is addressed for adaptive neural control system to approximate non-linear control system rather than static networks. It has the capability to represent the approximation of nonlinear system without mathematical analysis and to carry out the on-line learning algorithm for real time application. The simulated results show fast tracking capability and adaptive response by using dynamic back-propagation neurons.

  • PDF

Noisy Speech Enhancement by Restoration of DFT Components Using Neural Network (신경회로망을 이용한 DFT 성분 복원에 의한 음성강조)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1078-1084
    • /
    • 2010
  • This paper presents a speech enhancement system which restores the amplitude components and phase components by discrete Fourier transform (DFT), using neural network training by back-propagation algorithm. First, a neural network is trained using DFT amplitude components and phase components of noisy speech signal, then the proposed system enhances speech signals that are degraded by white noise using a neural network. Experimental results demonstrate that speech signals degraded by white noise are enhanced by the proposed system using the neural network, whose inputs are DFT amplitude components and phase components. Based on measuring spectral distortion measurement, experiments confirm that the proposed system is effective for white noise.

Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates (비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델)

  • Kim Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.800-804
    • /
    • 2005
  • This paper presents a fuzzy learning rule which is the fuzzified version of LVQ(Learning Vector Quantization). This fuzzy learning rule 3 uses fuzzy learning rates. instead of the traditional learning rates. LVQ uses the same learning rate regardless of correctness of classification. But, the new fuzzy learning rule uses the different learning rates depending on whether classification is correct or not. The new fuzzy learning rule is integrated into the improved IAFC(Integrated Adaptive Fuzzy Clustering) neural network. The improved IAFC neural network is both stable and plastic. The iris data set is used to compare the performance of the supervised IAFC neural network 3 with the performance of backprogation neural network. The results show that the supervised IAFC neural network 3 is better than backpropagation neural network.

On the enhancement of the learning efficiency of the adaptive back propagation neural network using the generating and adding the hidden layer node (은닉층 노드의 생성추가를 이용한 적응 역전파 신경회로망의 학습능률 향상에 관한 연구)

  • Kim, Eun-Won;Hong, Bong-Wha
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.66-75
    • /
    • 2002
  • This paper presents an adaptive back propagation algorithm that its able to enhancement for the learning efficiency with updating the learning parameter and varies the number of hidden layer node by the generated error, adaptively. This algorithm is expected to escaping from the local minimum and make the best environment for the convergence of the back propagation neural network. On the simulation tested this algorithm on three learning pattern. One was exclusive-OR learning and the another was 3-parity problem and 7${\times}$5 dot alphabetic font learning. In result that the probability of becoming trapped in local minimum was reduce. Furthermore, the neural network enhanced to learning efficient about 17.6%~64.7% for the existed back propagation.