• 제목/요약/키워드: 역삼투 공정

Search Result 184, Processing Time 0.028 seconds

Concentration of Vanadium in Jeju Groundwater Using Reverse Osmosis Processes (역삼투 공정을 이용한 제주 지하수의 바나듐 농축)

  • Lee, Ho-Won;Moon, Soo-Hyoung;Ko, Kyung-Soo
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.241-249
    • /
    • 2008
  • This study is to concentrate vanadium in Jeju groundwater using reverse osmosis processes, and to utilize the concentrate for vanadium water. Groundwater samples were taken from Wahyul, Ayum, and Seogwipo groundwater wells with different in vanadium content each other. Their vanadiuln concentrations were 31.8, 44.5, and 53.0 ppb, respectively. The rejection coefficients of every component in groundwater were increased with the increase of TMP At the TMP of $8 kg_f/cm^2$, the rejection coefficients of vanadium, sodium, potassium, aluminium, iron, and barium were $97.4%{\sim}99.0%,\;97.7%{\sim}97.8%,\;98.0%{\sim}98.3%,\;94.8%{\sim}97.5%,\;88.0%{\sim}96.4.0%$, and $97.9{\sim}98.0%$, respectively. And those of magnesium, calcium, chromium, mauganese, and strontium in three groundwater were more than 99.0% at the same TMP. It was possible that vanadium contents of Wahyul, Ayum and Seogwipo groundwater were concentrated into 58.6, 118.9, and 165.1 ppb, respectively, by 6 stages treatment at the recovery ratio of 15%. And these concentrated water (vanadium water) did not exceed the permissible drinking water standards.

A Review Based on Ion Separation by Ion Exchange Membrane (이온교환막을 통한 이온분리에 대한 총설)

  • Assel, Sarsenbek;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.209-217
    • /
    • 2022
  • Ion exchange membrane (IEM) is an important class of membrane applied in batteries, fuel cells, chloride-alkali processes, etc to separate various mono and multivalent ions. The membrane process is based on the electrically driven force, green separation method, which is an emerging area in desalination of seawater and water treatment. Electrodialysis (ED) is a technique in which cations and anions move selectively along the IEM. Anion exchange membrane (AEM) is one of the important components of the ED process which is critical to enhancing the process efficiency. The introduction of cross-linking in the IEM improves the ion-selective separation performance due to the reduction of free volume. During the desalination of seawater by reverse osmosis (RO) process, there is a lot of dissolved salt present in the concentrate of RO. So, the ED process consisting of a monovalent cation-selective membrane reduces fouling and improves membrane flux. This review is divided into three sections such as electrodialysis (ED), anion exchange membrane (AEM), and cation exchange membrane (CEM).

A Study on the Treatment of Wastewater from Ion Removal Process for Purifying Electrocoat Paint in the Bath by Use of Reverse Osmosis (역삼투압을 이용한 전착도료 정제공정폐수처리에 관한 연구)

  • 김진성
    • Membrane Journal
    • /
    • v.8 no.2
    • /
    • pp.77-85
    • /
    • 1998
  • To treat effectively EDIR (electrodeposition ion removal) wastewater in terms of CO$_{Mn}$ 1,500~2,000 ppm generated from aluminum painting process, a RO (reverse osmosis) process was designed and installed to recover and reuse the concentrated solvent sent back to the electrocodeposition tank while the permeate reused as rinse water. A RO system in which three polyamide-spiral wound modules ($102\Phi \times 1,016L$ mm) connnected in series had been running to treat 20 m$^3$ in waste volume in 3 days batch operation at the condition of system recovery of 30 %, applied pressure 11.5 $kg_f/cm^2$ and room temperature. During 42 hours continuous operation leading to 5-fold decrease in waste volume, nearly constant permeation flux of 390 l/m$^2$-hr was maintained and the permeate with average CO$_{Mn}$, 300 ppm was obtained which could be used for washing the remaining paint solution in ion-exchange tower instead of demineralized water. Also COD$_{Mn}$ rejection as a function of running time was observed to be in the range of 78~87 % and the observed solvent rejections for ethyl cellusolve, buthyl cellusolve and n-butanol were 79 %, 87 % and 70 %, respectively.

  • PDF

Preparation and Properties of Cellulose Triacetate Membranes for Reverse Osmosis (역삼투용 Cellulose Triacetate 막의 제조와 특성)

  • Nam, Sang-Yong;Hwang, Hae-Young;Koh, Hyung-Chul
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.277-286
    • /
    • 2007
  • The technology of seawater desalination has been received much attentions to solve the problem of water shortage through all over the world. In this study, it attempts to confirm the use-possibility of cellulose triacetate (CTA) for preparation of reverse osmosis membranes which have been highlighted as high efficiency and low energy consumption process for seawater desalination. The effects of casting dope parameters like an acetyl content, solvent, additives on the membrane performance were investigated. It was possible to produce the membranes which have high water flow rate and salt rejection with the increase of acetyl content and dioxane content among various dioxane/acetone ratios. Acetic acid and maleic acid were preferred for additives to produce high performance membranes. It was verified that $HOLLOSEP^{(R)}$ module which is commercialized CTA membrane by TOYOBO Co. can produce stable water production and high-quality water for long-term operation in the practice plants without any chemical treatments.

The Application of RO Membrane System in Municipal Wastewater Reclamation (RO Membrane System을 이용한 도시하수처리)

  • 이규현;안준수;유제강
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.78-95
    • /
    • 1991
  • Water factory 21(WF 2) in Orange County California, is a advanced wastewater treatment(AWT) plant designed to reclaim biologically treated munidpal wastewater for injection into a seawater barrier system. Processes included are lime treatment air stripping, filtration, activated carbon adsorption, reverse osmosis(RO), and chlorination. The effectiveness of each treatment process is presented including pretreatment, RO dimineralization. The data collected show that the processes, including RO, used at WF-21 are capable of producing a very high quality water on a reliable basis. Treatment reduced all contaminants, to levels below national primary drinldng water regulation maximum contaminant levels. It was found that lime clarified secondary effluent can be used as feedwater to a RO dimineralizer. Experiments with new low pressure membrane(250psi) show great potential for reducing RO cost.

  • PDF

Effect of Pretreated Seawater Quality on SDI in SWRO Desalination Process (SWRO 해수담수화 공정에서 전처리된 수질조건이 SDI에 미치는 영향)

  • Son, Dong-Min;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.200-205
    • /
    • 2013
  • Pretreatment process is the critical step of RO (Reverse Osmosis) membrane desalination plant in order to prevent RO membrane fouling. The pretreatment as a key component of RO process must be designed to produce a constant and high quality RO feedwater which has low silt density index (SDI). This experiment was conducted to assess parameters affecting SDI value, such as pH, seawater turbidity, temperature, and coagulant dose. The experimental results indicated that the source seawater turbidity did cause little effects on SDI values of filtered water. The 0.45 um hydrophilic membrane was more appropriate than the hydrophobic membrane for measuring SDI. The SDI value was increased with decreasing pH under the condition of below pH 7.0. In addition, the water temperature significantly affected the SDI values, showing higher SDI value with lower water temperature.

Evaluation of Oil Pollutants Removal in Seawater as Pretreatment Process for Reverse Osmosis Desalination Process (역삼투식 해수담수화의 전처리공정으로서 유분 제거의 평가)

  • ;Okada Mitsumasa
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.205-209
    • /
    • 2003
  • The various pretreatment processes were evaluated for removal of oil pollutants with weathered oil contaminated seawater in a reverse osmosis desalination process. Weathered oil contaminated seawater was made by biodegradation and photooxidation with oil containing seawater. Coagulation, ultrafiltration, advanced oxidation processes and granular activated carbon filtration was used with pretreatment for dissolved organic carbon. Crude oil was removed but. weathered oil contaminated seawater was not removed by biodegradation and coagulation. DOC and E260 was removed with about 20 % and 40 % by membrane filter of cut off molecular weight 500. So, the most of dissolved organic carbon in weathered oil contaminated seawater was revealed that molecular weight was lower than 500. It is difficult to remove DOC in weathered oil contaminated seawater by advanced oxidation processes treatment, but, E260 was removed more high. However, DOC in weathered oil contaminated seawater was easily adsorbed to GAC. It is revealed that DOC was removed by adsorption.

  • PDF

Auto Tuning of PID for RO System Using Immune Algorithm (면역 알고리즘을 이용한 RO 공정 PID 제어기의 자동 튜닝)

  • Kim, Go-Eun;Park, Ji-Mo;Kim, Jin-Sung;Kwon, O-Shin;Heo, Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1103-1109
    • /
    • 2009
  • In this paper, the control of a membrane used in reverse osmosis desalination plant by using immune algorithm(IA) is addressed. The proposed algorithm IA of auto tuning method can find optimal gains and compared with conventional Ziegler-Nichols tuning method. The results of computer simulation represent that the proposed IA shows a good control performances better than Ziegler-Nichols tuning method.

Modification Characteristics of Polyimide Asymmetric Membrane by Thermal Treatment (열처리에 의한 Polyimide 비대칭 막의 개질화 특성)

  • 최호상;남석태;박영태;전재홍;이석기;곽순철
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.112-114
    • /
    • 1998
  • 막분리기술은 분릿대상 성분과 분리매체와의 분자 사이의 힘의 차를 이용하여 분리하는 기술이기 때문에 분리특성을 고도로 기능화시키는 것이 가능하다. 또한 막분리 기술 자체가 에너지 절약기술이기 때문에 차세대 분리기수로서 중요한 역할을 할 수 있다. 이와 같은 분리기술은 역삼투법 등의 수용액계와 상온 부근의 기체분리막은 실용화되어 있다. 그러나 비수용액계 또는 고온 공정에서 특수한 조건하에서 고기능성 분리성능을 가지는 막의 개발에 대한 요구가 증대되고 있다. 이에 대응하여 내열성, 내용제성이 우수한 고분자에 의한 분리성능을 요구한다. 특히 근년에는 방향족 polyimide 수지가 주목을 받고 있으며, 내열성, 내구성 및 기계-전기적 특성이 우수한 재질로 광범위하게 사용되고 있다. 이것은 분자 구성기가 가지는 결합에너지가 크고, 분자의 규칙성에 의한 유리전이온도가 높아서 250-300$\circ$C의 고온에서도 사용이 가능한 재료로서 한외여과막과 기체분리막으로 시판되고 있다.

  • PDF

Current Research Trends in Polyamide Based Nanocomposite Membranes for Desalination (해수담수화용 폴리아마이드 기반 나노복합막의 최신 연구동향)

  • Lee, Tae Hoon;Lee, Hee Dae;Park, Ho Bum
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.351-364
    • /
    • 2016
  • In recent decades, many researchers have tried to improve desalination performances of polyamide (PA) thin-film composite membranes (TFCs) by incorporating nanomaterials into a selective PA layer. This review focuses on PA-based nanocomposite membranes with high performances for energy-effective desalination in reverse osmosis. Carbon based nanomaterial (e.g., graphene oxide (GO), carbon nanotubes (CNT)) and/or other nanoparticles (e.g., zeolite, silica and etc.,) were applied to overcome the trade-off correlation between water permeability and salt rejection of current polymeric desalination membranes. Here, this brief review will discuss current studies of PA-based nanocomposite membranes with enhanced separation characteristics and provide the future research direction to achieve further improved desalination performances.