• Title/Summary/Keyword: 역삼투 공정

Search Result 184, Processing Time 0.026 seconds

Secondary Concentration Technology of Brine from Membrane Seawater Desalination Process with Electrodialysis (전기투석을 이용한 분리막 담수화 공정 배출 농축수의 이차 농축기술)

  • Moon, Jeong-Ki;Park, Kwang-Seok;Yoo, Yoon-Ki;Yun, Young-Ki
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.69-73
    • /
    • 2013
  • This study is about the secondary concentration technology using electrodialysis process for minimum discharge and maximize recovery ratio from seawater desalination by reverse osmosis process. The experimental method adopted the constant voltage driving method and, concentrated/desalination volume capacity ratio changes, voltage changes and electrolyte types. Multi-ion membrane is used, aiming to derive conditions to minimize the TDS concentration of desalination water, to minimize the volumes of secnodary concentraion water and minimizing the power efficiency. The results of this study are as follows. The optimal ratio of concentraion/desalination volume is 1:5, the final TDS concentration of desalinated water is 5.32g/l, the final secnodary concentrated water salinity is 17.07% and electric energy demands of desalinated water is $16.74kWh/m^3$.

Effect of gas hydrate process on energy saving for reverse osmosis process in seawater desalination plant (해수담수화플랜트에서 가스 하이드레이트 공정 도입을 통한 역삼투 공정의 에너지 절감 효과)

  • Kim, Suhan;Lim, Jun-Heok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.771-778
    • /
    • 2013
  • Gas hydrate (GH) process is a new desalination technology, where GH is a non- stoichiometric crystalline inclusion compounds formed by water and a number of gas molecules. Seawater GH is produced in a low temperature and a high pressure condition and they are separated from the concentrated seawater. The drawback of the GH process so far is that salt contents contained in its product does not meet the fresh water quality standard. This means that the GH process is not a standalone process for seawater desalination and it needs the help of other desalting process like reverse osmosis (RO). The objective of this study is to investigate the effect of GH process on energy saving for RO process in seawater desalination. The GH product water quality data, which were obtained from a literature, were used as input data for RO process simulation. The simulation results show that the energy saving effect by the GH process is in a range of 68 % to 81 %, which increases as the salt removal efficiency of the GH process increases. Boron (B) and total dissolved solids (TDS) concentrations of the final product of the hybrid process of GH and RO were also investigated through the RO process simulation to find relavant salt rejection efficiency of the GH process. In conclusion, the salt rejection efficiency of the GH process should exceed at least 78% in order to meet the product water quality standards and to increase the energy saving effect.

Comparison of Nitrate and Fluoride Removals between Reverse-Osmosis, Nano-Flitration, Electro-Adsorption, Elecero-Coagulation in Small Water Treatment Plants (소규모 수도시설의 역삼투(RO), 나노여과(NF), 전기흡착(EA), 전기응집(EC) 공정의 질산성 질소 및 불소 이온 제거 성능 비교)

  • Han, Song-Hee;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2027-2036
    • /
    • 2013
  • Comparison of removal performance between reverse osmosis(RO), nanofiltration(NF), electrocoagulation(EC) and electroadsorption(EA) for removal of nitrate and fluoride often exceeded the limits of water quality in small water treatment plants. Removals of nitrate and fluoride were 72-92% and 74-85% in RO, 5-15% and 1% in NF, 99% and 44% in EA equipped with MWCNT coated electrodes, 82% and 77% in EA equipped with Cu-MWCNT electrodes, and 11-46% and 69-99% in EC. Consequently, high removals of both ions were anticipated in RO. Effective removal of both ions are possible for EC, but great production of sludge is a big burden. EA equipped with the MWCNT electrodes showed a great fluctuation in removal efficiency, and electrode stability should be upgraded.

Effect of MWCNTs/PSf support layer on the performance of polyamide reverse osmosis membrane (탄소나노튜브가 첨가된 폴리술폰 지지체가 폴리아미드 역삼투막의 성능에 미치는 영향)

  • Min, Choong-Sik;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.127-137
    • /
    • 2020
  • In this study, a MWCNT(multi-wall carbon nanotube) was added to polysulfone(PSf) support layer to improve flux of TFC(thin film composite) RO(reverse osmosis) membrane. Two different kinds of MWCNT were used. Surfaces of some MWCNTs were modified hydrophilically through acid treatment, while those of other MWCNTs were modified through heat treatment to maintain their hydrophobicity. MWCNT/PSf support layer was prepared by adding PSf to the NMP mixed solvent containing 0.1 wt% MWCNTs using a phase inversion method. The surface porosity of the MWCNT/PSf support increased by 42~46% while its surface pore size being maintained. The TFC RO membrane made of MWCNT/PSf support layer showed a 20% flux increase while its salt rejection characteristics is sustained. In addition, the MWCNT/PSf support layer has better mechanical stability than the PSf support layer, there resulting in an increased resistance of flux reduction due to physical pressure.

Concentration of Functional Mineral by NF/RO Processes (나노여과/역삼투 공정을 이용한 기능성 미네랄의 농축)

  • Lee, Ho-Won;Moon, Soo-Hyoung;Ko, Kyoung-Soo
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.277-284
    • /
    • 2009
  • In order to select the most suitable membrane to the concentration of vanadium and silica in groundwater, two different commercial NF membrane modules (NE2540-90 and NF90-2540) and three different commercial RO membrane modules (BW30-2540, RE2540-TE, and XLE-2540) were tested. The membrane characteristics test results showed that NE2540-90 module was the most efficient because of higher permeate flux and similar rejection coefficient. Using NE2540-90 module at the transmembrane pressure of $8\;kgf/cm^2$, it was found that the rejection coefficients of vanadium, silica, aluminium, chromium, iron, boron, strontium, and barium were 98.2%, 99.0%, 92.0%, 83.6%, 96.0%, 45.1%, 98.6%, and 69.5%, respectively. It was possible that vanadium and silica contents of groundwater were concentrated into $148.9\;{\mu}g/L$ and 85.8 mg/L respectively by six-stages NF process at the recovery ratio of 15%. The waters produced by NF, which are enriched in vanadium and silica content, are expected to be commercialized the various functional mineral waters.

Comparative Analysis of Seawater Desalination Technology in Korea and Overseas (국내 및 해외의 해수담수화 기술 비교분석)

  • Hwang, Moon-Hyun;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.255-268
    • /
    • 2016
  • Climate change has increased the need to secure a new water resource in addition to the traditional water resources such as surface water and ground water. The seawater desalination market is growing sharply in accordance with this situation in Korea, "seawater engineering & architecture of high efficiency reverse osmosis (SEAHERO)" program was launched in 2007 to keep pace with world market trend. SEAHERO program was completed in 2014, contributed to turn the domestic technology in evaporative desalination technology to RO desalination technology. Currently, it is investigated that the average specific energy consumption of the whole RO plant is around $3.5kWh/m^3$. The Busan Gi-jang plant has shown $3.7{\sim}4.0kWh/m^3$, including operational electricity for plant and maintenance building. Although not world top level, domestic RO technology is considered to be able to compete in desalination market. Separately, many researchers in the world are developing new technologies for energy savings. Various processes, forward osmosis (FO), membrane distillation (MD) process are expected to compete with RO in the future market. In Korea, FO-RO hybrid process, MD and pressure retarded osmosis (PRO) process are under development through the research program in Ministry of Land, Infrastructure and Transport (MOLIT). The desalination technology level is expected to decrease to $2.5kWh/m^3$.

Optimization of Ascorbic Acid Encapsulation in PLA Microcapsules Using Double Emulsion Process (이중유화법을 이용한 PLA 마이크로캡슐 내부로의 아스코르브산 캡슐화 공정 최적화)

  • Ji Won Yun;Young Mi Chung
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.115-121
    • /
    • 2024
  • This study analyzed the influence of process variables affecting the thermodynamic equilibrium and fluid dynamics of interfaces such as reverse micelle, salt concentration, interfacial tension, and viscosity of fluids to optimize the microencapsulation process using the W1/O/W2 double emulsion method. The process variable with the greatest impact on encapsulation efficiency was found to be the difference in osmotic pressure between the W1 and W2 phases. It was observed that increasing the salt concentration in the W2 phase or decreasing the ascorbic acid concentration in the W1 phase resulted in higher encapsulation efficiency. Additionally, a larger difference in osmotic pressure led to increased damage to the surface of the microparticles, as confirmed by SEM images. The introduction of reverse micelles, which was anticipated to increase encapsulation efficiency, either had a low contribution or even decreased encapsulation efficiency. The yield of microcapsules was expressed as a universal function, applicable to all process conditions or solution compositions. According to this universal function, no further increase in yield was observed beyond the Ca (capillary number) of approximately 20.

Influence of pH and Ionic Strength on Treatment of Radioactive Boric Acid Wastes by Forward Osmosis Membrane (정삼투막에 의한 붕산함유 방사성 폐액 처리를 위한 pH 및 이온강도 영향)

  • Choi, Hye-Min;Hwang, Doo-Seong;Lee, Kune-Woo;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.193-198
    • /
    • 2013
  • In general, boron recovery of 40-90% could be achieved by Reverse Osmosis (RO) membranes in neutral pH condition. As an emerging technology, Forward Osmosis (FO) membrane has attracted growing interest in wastewater treatment and desalination. The objective of this study is to evaluate the possibility of the boron removal in radioactive liquid waste by FO. In this study, the performance of FO was investigated to remove boron in the simulated liquid waste as the factors such as pH, osmotic pressure, ionic strength of solution, etc. The pH of feed solution is a major operating parameter which strongly influences to the permeation of boron and more than 80% of boron content can be separated when conducted at pH values less than 7. The water flux is not influenced but the boron flux and permeation rate tends to decrease in the low salt concentration of 1,000 mg/L. The boron flux increases linearly, but the permeation ratio of reducing boron is nearly constant even with changes in the draw solution concentration.

Effect of Membrane Module and Feed Flow Configuration on Performance in Pressure Retarded Osmosis (압력지연삼투(PRO) 공정에서 막 모듈 배치와 유입원수의 유입 흐름방식이 성능에 미치는 영향)

  • Go, Gilhyun;Kim, Donghyun;Park, Taeshin;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.271-278
    • /
    • 2016
  • Recently, reverse osmosis (RO) is the most common process for seawater desalination. A common problem in both RO and thermal processes is the high energy requirements for seawater desalination. The one energy saving method when utilizing the osmotic power is utilizing pressure retarded osmosis (PRO) process. The PRO process can be used to operate hydro turbines for electrical power production or can be used directly to supplement the energy required for RO desalination system. This study was carried out to evaluate the performance of both single-stage PRO process and two-stage PRO process using RO concentrate for a draw solution and RO permeate for a feed solution. The major results, were found that increase of the draw and feed solution flowrate lead to increase of the production of power density and water permeate. Also, comparison between CDCF and CDDF configuration showed that the CDDF was better than CDCF for stable operation of PRO process. In addition, power density of two-stage PRO was lower than the one of single-stage. However, net power of two-stage PRO was higher than the one of single-stage PRO.

Study on the Membrane Cleaning-in-place (CIP) Conditions for the Dye Wastewater Treatment Process Using Polyamide Composite Membranes (폴리아마이드계 복합막을 이용한 염료 폐수 처리 공정 분리막 세척 조건 연구)

  • JeGal, Jong-Geon;Lee, Yong-Hwan;Hwang, Jeong-Eun;Jaung, Jae-Yun
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.94-102
    • /
    • 2008
  • For the treatment of the dye wastewater, a polyamide nano-composite membrane and reverse osmosis (RO) membranes were prepared using interfacial polymerization technique, in which piperazine, meta-phenylene diamine, and trimesoyl chloride were used as monomers, Their permselective properties were characterized with aqueous solutions of PEG 600, $Na_2SO_4$, and NaCl, and their performance was compared with that of Osmonics Co, They were found to be a typical nano-composite membrane and a low pressure RO membrane. Using them, a real dye wastewater supplied from the Kyungin Corporation, one of the domestic dye producer, was treated, studying the separation performances of the membranes, Also, during the wastewater treatment, cleaning in place (CIP) of the membranes was carried out regularly to recover the flux of the membranes. Three different chemical cleaners were employed for the CIP process and their performance were compared in this study.