• Title/Summary/Keyword: 역삼투법

Search Result 59, Processing Time 0.024 seconds

Graphene Oxide Incorporated Antifouling Thin Film Composite Membrane for Application in Desalination and Clean Energy Harvesting Processes (해수담수화와 청정 에너지 하베스팅을 위한 산화 그래핀 결합 합성 폴리머 방오 멤브레인)

  • Lee, Daewon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.16-34
    • /
    • 2021
  • Water supplies are decreasing in comparison to increasing clean water demands. Using nanofiltration is one of the most effective and economical methods to meet the need for clean water. Common methods for desalination are reverse osmosis and nanofiltration. However, pristine membranes lack the essential features which are, stability, economic efficiency, antibacterial and antifouling performances. To enhance the properties of the pristine membranes, graphene oxide (GO) is a promising and widely researched material for thin film composites (TFC) membrane due to their characteristics that help improve the hydrophilicity and anti-fouling properties. Modification of the membrane can be done on different layers. The thin film composite membranes are composed of three different layers, the top filtering active thin polyamide (PA) layer, supporting porous layer, and supporting fabric. Forward osmosis (FO) process is yet another energy efficient desalination process, but its efficiency is affected due to biofouling. Incorporation of GO enhance antibacterial properties leading to reduction of biofilm formation on the membrane surface. Pressure retarded osmosis (PRO) is an excellent process to generate clean energy from sea water and the biofouling of membrane is reduced by introduction of GO into the active layer of the TFC membrane. Different modifications on the membranes are being researched, each modification with its own advantages and disadvantages. In this review, modifications of nanofiltration membranes and their composites, characterization, and performances are discussed.

Progress of Nanofiltration Hollow Fiber Membrane (NF용 중공사 분리막의 발전)

  • Jang, Hanna;Kim, Seongjoong;Lee, Yongtaek;Lee, Kew-Ho
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.456-470
    • /
    • 2013
  • Hollow-fiber membranes, is one of the new technologies that is growing rapidly in the past few decades. In addition, separation membranes using polymer materials, have attracted attentions in various fields including gas separation, fuel cells, water treatment, wastewater treatment, and organic separation. Nanofiltration (NF) membranes having the separation characteristics in the intermediate range between ultrafiltration and reverse osmosis (RO) membranes for liquid separation, with relatively low investment cost and operating pressure lower than that of RO membranes, have high permeance and rejection performance of multivalent ions as well as organic compounds of molecular weight between $200{\sim}1000gmol^{-1}$. In this paper, we would like to review the research trends on the various structure control and characterization of NF hollow fiber membranes with respect to materials and the methods of preparation (phase inversion method and interfacial polymerization method). Currently, most of NF membranes have been manufactured by plate and frame types or spiral wound types. But hollow fiber types have delayed in commercial products, because of the weak strength when to produce on the basis of the existing materials, therefore the development of new materials or improvement of existing materials will be needed. If improving manufacturing technology is available, hollow fiber types will replace spiral wound types and gradually show a higher market share.

Review of Basics Reverse Osmosis Process Modeling: A New Combined Fouling Index Proposed (역삼투 공정을 위한 모델링 총설 및 새로운 복합적 막오염도의 제안)

  • Kim, Albert S.
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.291-312
    • /
    • 2017
  • Seawater desalination is currently considered to be one of the primary technologies to resolve the global water scarcity problem. A basic understanding of membrane filtration phenomena is significant not only for further technological development but also for integrated design, optimal control, and long-term maintenance. In this vein, the present work reviews the major transport and filtration models, specifically related to reverse osmosis phenomena, provides theoretical insights based on statistical mechanics, and discusses model-based physical meanings as related to their practical implications.

Composite Membrane Preparation for Low Pressure Using Salting-Out Method and Its Application to Nanofiltration Process (염석법에 의한 저압용 역삼투막 제조 및 NF로의 적용)

  • Jeon, Yi Seul;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.440-446
    • /
    • 2015
  • Nanofiltration composite membranes were prepared through the ion exchange polymers coating onto the porous microfiltration polyethylene (PE) membrane surfaces the salting-out and phase separated and pressurization (PSP) methods. The existence of coating on the surfaces was confirmed by the scanning electronic microscopy. The resulting membranes were characterized under the various conditions, such as the coating material, coating time, ionic strength etc., in terms of flux and rejection for NaCl 100 ppm solution. Under the same coating conditions of 10,000 ppm coating solution concentration and 3 atm coating pressure for both the coating materials of PEI and PSSA_MA, the flux 91.2 LMH and rejection 64.6% were obtained for PEI whereas 122.7 LMH and 38.1% were observed for PSSA_MA. From this study, it may be concluded that the composite membrane preparation is possible.

A Study on the Nitrate Removal in Water by Chelating Bond of Calcium Alginate (Calcium Alginate의 킬레이트 결합을 이용한 수중의 질산성 질소 제거에 관한 연구)

  • Kim, Tae Kyeong;Song, Ju Young;Kim, Jong Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.795-801
    • /
    • 2016
  • This study is on the denitrification process using the sodium alginate and $CaCl_2$ as a flocculant. Removal techniques of nitrate nitrogen from waste water are reverse osmosis, ion exchange, electro dialysis and biological method etc. We tried to remove nitrate nitrogen with flocculation and sedimentation method in the present study. Calcium alginate is expected to form a chelate bond with nitrate nitrogen in the solution. So the effects of flocculantt component, flocculation reaction time, molar ratio of the flocculant, flocculant injection rate are studied to determine the best removal rate of nitrate nitrogen. In addition, we tried to determine the nitrate nitrogen removal mechanism by analyzing the structure and component ratio of the configuration after the agglutination precipitate by FE-SEM and EDS. As a result, the nitrate nitrogen removal mechanism is turned out to form calcium-nitro-alginate, and the best mole ratio of flocculating agent is 1 : 1, the injection rate of the flocculant was up to 2%, the removal rate of the nitrate nitrogen to be 56.7% in the synthetic wastewater.

Quality of Ginger Powder as Affected by Concentration and Dehydration Methods of Ginger Extracts (농축 및 건조방법에 따른 생강 추출액 분말의 품질변화)

  • Jeong, Moon-Cheol;Jeong, Seong-Weon;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1589-1595
    • /
    • 1999
  • Reverse osmosis(RO) and rotary evaporation, freezer drying and spray drying as concentration and dehydration methods were, respectively, employed to investigate their effect on the flavor quality of ginger powder. Rotary evaporation and spray drying methods were more effective to restrict the browning of ginger powder than RO and freezer drying methods. Concentration methods had no effect on the free amino acids and free sugar contents of ginger powder, but freezer drying resulted in the less quality loss than spray drying. And the powder prepared from enzymatically hydrolyzed extract contained less crude protein, crude ash, browning and the changes in free amino acids, but had more the crude fat, solubility and free sugars than that from ginger extract obtained by filter press. Sensory results indicated that quality of ginger powder prepared by RO concentration and freeze drying of enzymatically hydrolyzed extract was as good as that without enzyme hydrolysis

  • PDF

Prediction model for electric power consumption of seawater desalination based on machine learning by seawater quality change in future (장래 해수수질 변화에 따른 머신러닝 기반 해수담수 전력비 예측 모형 개발)

  • Shim, Kyudae;Ko, Young-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1023-1035
    • /
    • 2021
  • The electricity cost of a desalination facility was also predicted and reviewed, which allowed the proposed model to be incorporated into the future design of such facilities. Input data from 2003 to 2014 of the Korea Hydrographic and Oceanographic Agency (KHOA) were used, and the structure of the model was determined using the trial and error method to analyze as well as hyperparameters such as salinity and seawater temperature. The future seawater quality was estimated by optimizing the prediction model based on machine learning. Results indicated that the seawater temperature would be similar to the existing pattern, and salinity showed a gradual decrease in the maximum value from the past measurement data. Therefore, it was reviewed that the electricity cost for seawater desalination decreased by approximately 0.80% and a process configuration was determined to be necessary. This study aimed at establishing a machine-learning-based prediction model to predict future water quality changes, reviewed the impact on the scale of seawater desalination facilities, and suggested alternatives.

Preparation and Properties of Chlorine-Resistance Loose Reverse Osmosis Hollow-fiber Membrane (내염소성 중공사형 역삼투막(Loose RO)의 제조 및 특성)

  • Kim, Se-Jong;Woo, Seung-Moon;Hwang, Hae-Yong;Koh, Hyung-Chul;Ha, Seong-Yong;Choi, Ho-Sang;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.304-311
    • /
    • 2010
  • In this study, loose RO hollow fiber membranes using CTA polymer were prepared by phase inversion method and their water purification properties were tested. 1,4-dioxane and LiCl was used as a skin layer formation agent and pore formation agent, respectively. Water flux, salt rejection, chlorine resistance, MWCO and membrane morphology were evaluated as a function of the dope composition. When the membrane prepared using the dope solution of CTA/NMP/1,4-dioxane = 18/72/10 (wt%) with air gap of 30 cm, it shows improved RO performance such as $20.5L/m^2hr$ of water flux, 60% of NaCl rejection, 10,000 ppm/hr of chlorine-resistance and around 5,000 Da of MWCO.

The Effect of Feed Temperature On Permeate Flux During Membrane Separation (온도가 막분리 투과성능에 미치는 영향)

  • Kim, Kwang Soo;Moon, Deok Soo;Kim, Hyeon Ju;Lee, Seung Won;Ji, Ho;Jung, Hyeon Ji;Won, Hye Jung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The feed temperature has an effect on the performance during desalination of seawater by membrane separation. When the permeate flux intends to increase using the waste heat, it is necessary to analyze the effect of feed temperature precisely on the membrane performance. The experiments were carried out to investigate the performance of membranes by varying the seawater temperature from $10^{\circ}C$ to $60^{\circ}C$. The increase of permeate flux with increase of feed temperature was interpreted as the change of water viscosity and the membrane itself. While the increase of permeate flux could be predicted by the viscosity change in case of nanoflitration membrane, there exists 30% difference between the experiment data and the prediction by the viscosity change in case of reverse osmosis (RO) membrane, which seems to be due to 8% decrease of the pore size in 60caused by the contraction of membrane with the increase of temperature. Therefore, the desalination of seawater should be carried out within the range that the elevation of temperature does not cause the alteration of membrane itself even for the purpose of increasing the permeate flux.