• Title/Summary/Keyword: 여과막 생물반응기

Search Result 6, Processing Time 0.015 seconds

Thermophilic Hydrogen Production from Microbial Consortia Using PVDF Membrane Bioreactor (PVDF 여과막 생물막 반응기를 이용한 혐기 세균 복합체의 고온 수소생산)

  • Oh, You-Kwan;Lee, Dong-Yeol;Kim, Mi-Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.223-229
    • /
    • 2007
  • 여과막 생물반응기를 이용하여 $60^{\circ}C$에서 혐기 세균 복합체가 포도당으로부터 수소를 생산할 수 있는 최적조건을 연구하였다. 여과막 생물반응기는 연속교반 탱크반응기와 외부에 장착된 PVDF (polyvinylidene fluoride) 중공사막 여과장치로 구성되었다. 접종슬러지는 하수처리장 소화 슬러지조에서 얻었고, 포자형성 수소생산 미생물을 얻기 위해 $90^{\circ}C$에서 20분 간 열처리하였다. 16S rRNA PCR-DGGE(polymer chain reaction-denaturing gradient gel electrophoresis) 분석을 통해 열처리 전후의 미생물상 변화를 조사하였다. 열처리 후 DGGE 밴드의 수는 감소하였고, 주요 밴드는 Clostridium perfringens와 유사한 염기서열을 나타내었다. 운전 기간 동안 바이오가스 내 수소함량은 60%(v/v)를 유지하였고, 메탄은 검출되지 않았다. 연속교반 탱크반응기를 여과막 없이 수력학적 체류 4시간에서 운전하였을 때 공급된 포도당의 95.0%가 제거되었고, 이때 균체농도 및 수소생산속도는 각각 1.35 g cell/L 및 7.4 L $H_2$/L/day이었다. 동일한 체류시간에서 PVDF중공사막 여과장치를 장착하여 연속교반 탱크반응기를 운전하였을 때, 균체농도는 1.62 g cel/L로 증가하였고 높은 포도당 제거율(99.5%) 및 수소생산속도(8.8 L $H_2$/L/day)가 관찰되었다. 40 nm 및 100 nm의 공극크기를 가진 여과막은 균체농도 및 수소생산 측면에서 유사한 성능을 나타내었다. 여과막 생물반응기는 여과막의 반복적인 세척을 통해 30일 이상 안정적으로 운전될 수 있었다.

Continuous Hydrolysis of Cod Skin Gelatin in an Ultrafiltration Reactor (한외여과막 반응기를 이용한 어피젤라틴의 연속적 가수분해)

  • Kim, Se-Kwon;Byun, Hee-Guk;Cheryan,Munir
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.309-319
    • /
    • 1991
  • A continuous stirred tank membrane reactor(CSTMR ) was developed and optimized for the production of cod skin gelatin hydrolyzates using endo-protease Alcalase. A experimental design methodology was used to optimize the four performance variables: enzyme concentration, substrate concentration, permeate flux and reactor volume. All four variables studied had an effect on substrate conversion, with enzyme and substrate concentrations being predominant. Conversion increased with the increase in enzyme concentration, with the decrease in substrate concentration, at high volumes and low flux. A strong interaction was observed between enzyme and substrate concentrations and smaller interactions between enzyme and flux and substrate and flux. The optimum operating conditions for the CSTMR process for an initial substrate concentration for 10% were $50^{\circ}C$, pH 8, flux 7.3ml/min, residence time 82 min, and Alcalase to substrate ratio 0.02(w/w). A gradual decay in reactor activity during 8 hrs was 2.1% conversion/hr. Enzyme leakage through the 10, 000 MWCO membrane was 16% at $50^{\circ}C$ and 12% at $35^{\circ}C$, 6hrs. However, there was no apparent correlation between enayme leakage and substrate conversion. The Km value for the CSTMR was 20 times higher than the batch reactor. The productivity(expressed as mg product/mg enzyme) of the CSTMR was more than six fold higher than the batch at $50^{\circ}C$. The hydrolyzate was non-bitter.

  • PDF

Carbon Nanosphere Composite Ultrafiltration Membranes with Anti-Biofouling Properties and More Porous Structures for Wastewater Treatment Using MBRs (분리막 생물반응기를 활용한 폐수처리를 위한 생물오염방지 특성 및 다공성 구조를 가진 탄소나노구체 복합 한외여과막)

  • Jaewoo Lee
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.38-49
    • /
    • 2024
  • Wastewater treatment using membrane bioreactors has been extensively used to alleviate water shortage and pollution by improving the quality of the treated water discharged into the environment. However, membrane biofouling persistently holds back an MBR process by reducing the process efficiency. Herein, we synthesized carbon nanospheres (CNSs) with many hydrophilic oxygen groups and utilized them as an additive to prepare high-performance ultrafiltration (UF) membranes with hydrophilicity and porous pore structure. CNSs were found to form crescent-shaped pores on the membrane surface, increasing the mean surface pore size by about 40% without causing significant defects larger than bubble points, as the CNS content increased by 4.6 wt%. In addition, the porous pore structure of CNS composite membranes was also attributable to the CNS's isotropic morphologies and relatively low particle number density because the aforementioned properties contributed to preventing the polymer solution viscosity from soaring with the loading of CNS. However, too porous structure compromised the mechanical properties, such that CNS2.3 was the best from a comprehensive consideration including the pore structure and mechanical properties. As a result, CNS2.3 showed not only 2 times higher water permeability than CNS0 but also 5 times longer operation duration until membrane cleaning was required.

Rooting and Acclimatization of Shoots Harvested from Bioreactor Culture in Rehmania glutinosa (생체반응기에서 수확한 지황 신초의 발근과 순화)

  • Koh, Eun-Jung;Chae, Young-Am
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.3
    • /
    • pp.186-188
    • /
    • 2002
  • This experiment was carried out to know the effect of media and agar concentrations, aeration and growth regulators on rooting and acclimatization of the shoots harvested from bioreactor culture in Rehmannia glutinosa. Half MS media with 1.2% agar improved rooting and acclimatization of shoots. Shoots were effectively acclimatized and rooted well in case of aeration by using membrane filtered vessels. Shoots acclimatized in vessel with membrane Inter were healthier and had higher ex vitro survival rate than those without membrane Inter on plug tray. Addition of paclobutrazol 0.3-0.4 mg/L, to acclimatization media enhanced shoots growth and root development.

Forward Osmosis Membrane to Treat Effluent from Anaerobic Fluidized Bed Bioreactor for Wastewater Reuse Applications (하수재이용을 위한 혐기성 유동상 생물반응기 처리수의 정삼투 여과막의 적용)

  • Kwon, Dae-eun;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.196-204
    • /
    • 2018
  • The anaerobic fluidized bed bioreactor (AFBR) treating synthetic wastewater to simulate domestic sewage was operated under GAC fluidization to provide high surface area for biofilm formation. Although the AFBR achieves excellent COD removal efficiency due to biological activities, concerns are still made with nutrient such as nitrogen remaining in the effluent produced by AFBR. In this study, forward osmosis membrane was applied to treat the effluent produced by AFBR to investigate removal efficiency of total nitrogen (TN) with respect to the draw solution (DS) such as NaCl and glucose. Permeability of FO membrane increased with increasing DS concentration. About 55% of TN removal efficiency was observed with the FO membrane using 1 M of NaCl of draw solution, but almost complete TN removal efficiency was achieved with 1 M of glucose of draw solution. During 24 h of filtration, there was no permeate flux decline with the FO membrane regardless of draw solution applied.

Design of Recycle Bubble Column Reactor for Continuous Enzymatic Hydrolysis of Cellulose (섬유소의 연속 효소 가수분해를 위한 순환식 기포탑 반응기의 설계)

  • 김춘영;홍석표정봉우이태원
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 1990
  • Enzymatic hydrolysis of insoluble cellulose was performed in a bubble column with tangential flow ulrafiltration membrane unit. The reactor was operated in a batch mode as well as semi-continuous and continuous with continuous removal of products through the tangential flow ultrafiltration membrane. The optimum superficial gas velocity was 1-3cm / sec so as to avoid bubble coalescence and enzyme denaturation. In continuous and selni-cotinuous process, the conversion was gradually increased but the total reduced sugar concentration was drcastically dereased with the dilution rate. It was concluded that the bubble column attaching tangential flow ultrafiltration membrane unit was effective on continuous hydrolysis of cellulose and recovery of enzyme.

  • PDF