급격한 차량 수요의 증가로 인한 주차공간의 부족으로 인력기반 주차관리의 한계점을 이용한 여러 위법 행위가 발생함에 따라 관리자의 정기적인 순찰 및 관리의 필요성이 증가하고 있다. 기존 인력기반 주차관리 시스템은 관리자에게 전적으로 의존하고 있어 관리의 정확도 및 효율성이 비교적 낮다. 본 논문에서는 엣지 컴퓨팅 기반의 클라우드 주차관리 시스템을 제안하며, 이는 효율적인 주차관리를 통한 시간과 노동력 절감에 기여한다. 본 시스템이 제공하는 주요 기능은 다음과 같다. 1) 주차구역 및 주차 차량 정보를 분석하여 입·출차를 관리하고 관리자에게 실시간 주차 현황 정보를 제공한다. 2) 추출된 차량 정보를 바탕으로 부정주차 여부를 감지하여 지정주차 구역 관리를 자동화한다. 3) 관리자에게 시간대별 주차구역 점유율 정보를 제공하여 거주자의 가용 주차공간을 확보한다. 4) 거주자의 선호 주차구역 및 시간대를 파악하여 거주자의 주차 편의성을 제공한다. 위 기능을 통해 기존 주차관리의 비효율성을 개선하고자 한다.
딥러닝 모델이 컴퓨터 비전 분야에서 혁신적인 성과를 이루어내고 있으나, 적대적 예제에 취약하다는 문제가 지속적으로 제기되고 있다. 적대적 예제는 이미지에 미세한 노이즈를 주입하여 오분류를 유도하는 공격 방법으로서, 현실 세계에서의 딥러닝 모델 적용에 심각한 위협이 될 수 있다. 본 논문에서는 객체의 엣지를 강조하여 학습된 분류 모델과 기본 분류 모델 간 예측 값의 차이를 이용하여 적대적 예제를 탐지하는 모델을 제안한다. 객체의 엣지를 추출하여 학습에 반영하는 과정만으로 분류 모델의 강건성을 높일 수 있으며, 모델 간 예측값의 차이를 통하여 적대적 예제를 탐지하기 때문에 경제적이면서 효율적인 탐지가 가능하다. 실험 결과, 적대적 예제(eps={0.02, 0.05, 0.1, 0.2, 0.3})에 대한 일반 모델의 분류 정확도는 {49.9%, 29.84%, 18.46%, 4.95%, 3.36%}를 보인 반면, Canny 엣지 모델은 {82.58%, 65.96%, 46.71%, 24.94%, 13.41%}의 정확도를 보였고 다른 엣지 모델들도 이와 비슷한 수준의 정확도를 보여, 엣지 모델이 적대적 예제에 더 강건함을 확인할 수 있었다. 또한 모델 간 예측값의 차이를 이용한 적대적 예제 탐지 결과, 각 epsilon별 적대적 예제에 대하여 {85.47%, 84.64%, 91.44%, 95.47%, 87.61%}의 탐지율을 확인할 수 있었다. 본 연구가 관련 연구 분야 및 의료, 자율주행, 보안, 국방 등의 응용 산업 분야에서 딥러닝 모델의 신뢰성 제고에 기여할 것으로 기대한다.
IT 인프라 운영이 고도화하면서 시스템을 관리하는 방식이 널리 보급되어 있으며, 최근에는 Syslog를 활용한 개선방법들이 연구되고 있다. 그러나 이러한 방법으로 수집한 로그 데이터를 활용하여 시스템 관제를 할 경우 다양한 형식으로 추출되는 로그를 전문 인력이 분석해야 하는 어려움이 있다. 본 논문은 엣지 컴퓨팅을 활용하여 Syslog 데이터를 분산 수집하고 중복 데이터를 전처리하여 중앙 데이터베이스에 적재하는 시스템을 구축 방법을 제시하고자 한다. 또한, 데이터사전을 구성하여 실시간으로 데이터를 분류하고 카운팅하는 기능을 제공하며, 데이터사전에 등록된 데이터에 대해서는 중앙 데이터베이스로의 전송을 제한하는 시스템을 구현한다. 이를 통해 데이터 사전의 정의어 패턴을 유지하며, 중복 데이터와 시간 중복을 제어하여 중앙 데이터베이스에 정제된 데이터를 적재함으로써 빅데이터 분석을 위한 기초 자료를 확보할 수 있다. 시뮬레이션결과 제안된 알고리즘과 프로시저를 구체적인 예시와 함께 설명하고, syslog 데이터를 활용하여 그 성능을 검증하였다. syslog 데이터는 실제 로그 데이터에서 추출한 예시를 포함하고 있으며 이를 통해 로그 데이터로부터 필요한 정보를 정확하게 추출하였고, 분류 및 적재 과정에서 정상적인 처리가 이루어지는지를 확인하였다. 이러한 시스템은 엣지 환경에서 로그 데이터를 효율적으로 수집하고 관리하기 위한 솔루션으로 활용하여 기술의 확산 측면에서도 효과를 기대할 수 있다.
본 논문에서는 GPU(Graphic Processing Unit) 연산을 활용하여 BCC(Body Centered Cubic) 볼륨 데이터로부터 실시간으로 메시 형태의 등가면을 추출하는 개선된 마칭 사면체(Marching tetrahedra) 기법을 제안한다. 본 기법은 고전적인 방법과 비교하여 메모리 사용량은 다소 높지만 더 좋은 성능을 보인다. 본 기법은 다섯 단계로 구성되어 있다. 첫 번째 단계는 단 한번만 수행되는 단계로, 빈 공간을 생략하여 성능을 향상 시키기 위해 최소/최댓값 블록(Min/max block)을 생성한다. 두 번째 단계에서는 등갓값(Isovalue)을 포함하고 있는 유효한 블록을 추려낸다. 이후 두 단계에서는 등가면(Isosurface)을 포함하는 셀(Cell)과 엣지(Edge)를 추출하고, 마지막 단계에서 삼각형 메시(Triangle mesh)를 생성한다. 본 기법은 5123 이상의 고해상도 볼륨 데이터(Volume dataset)에 대한 등가면 추출 시, 삼각형 집합 형태의 등가면을 추출하는 고전적인 마칭 사면체 기법에 비해 최대 5배 정도의 속도 향상을 보인다.
엣지 컴퓨팅을 사용하는 서비스 공급업체는 높은 수준의 서비스를 제공한다. 이에 따라 다양하고 중요한 정보들이 단말 장치에 저장되면서 탐지하기 더욱 어려운 최신 사이버 공격의 핵심 목표가 됐다. 보안을 위해 침입 탐지시스템과 같은 보안 시스템이 자주 활용되지만, 기존의 침입 탐지 시스템은 탐지 정확도가 낮은 문제점이 존재한다. 따라서 본 논문에서는 엣지 컴퓨팅에서 단말 장치의 더욱 정확한 침입 탐지를 위한 기계 학습 모델을 제안한다. 제안하는 모델은 희소성 제약을 사용하여 입력 데이터의 중요한 특징 벡터들을 추출하는 stacked sparse autoencoder (SSAE)와 convolutional neural network (CNN)를 결합한 하이브리드 모델이다. 최적의 모델을 찾기 위해 SSAE의 희소성 계수를 조절하면서 모델의 성능을 비교 및 분석했다. 그 결과 희소성 계수가 일 때 96.9%로 가장 높은 정확도를 보여주었다. 따라서 모델이 중요한 특징들만 학습할 경우 더 높은 성능을 얻을 수 있었다.
본 논문은 전통적인 자원 집약적인 컴퓨터 비전 모델의 한계를 해결하기 위해 저전력 엣지 장치에 최적화된 새로운 경량 객체 검출 모델을 제안합니다. 제안된 검출기는 Single Shot Detector (SSD)에 기반하여 소형이면서도 견고한 네트워크를 설계하였고, 작은 객체를 효율적으로 감지하는 데 있어 효율성을 크게 향상시키도록 모델을 구성하였다. 이 모델은 주로 두 가지 구성요소로 구성되어 있습니다: Depthwise 와 Pointwise Convolution 레이어를 사용하여 효율적인 특징 추출을 위한 Light_Block, 그리고 작은 객체의 향상된 감지를 위한 Enhancer_Block 으로 나누었다. 우리의 모델은 300x480 의 이미지 크기를 가진 Udacity 주석이 달린 데이터셋에서 처음부터 훈련되었으며, 사전 훈련된 분류 가중치의 필요성을 제거하였다. 약 0.43M 의 파라미터로 5.5MB 만의 무게를 가진 우리의 검출기는 평균 정밀도 (mAP) 27.7%와 140 FPS 의 처리 속도를 달성하여, 정밀도와 효율성 모두에서 기존 모델을 능가하였다. 따라서, 본 논문은 추론의 정확성을 손상시키지 않으면서 엣지 장치를 위한 객체 검출에서의 효과적인 경량화를 보여주고 있다.
컴퓨터비전에서 안정적으로 대응점을 획득하는 것은 매우 중요한 일이다. 그러나 이들은 스케일, 조명, 시점 등이 변하는 환경에서 정확한 대응점을 찾는 과정은 쉽지 않다. SIFT 알고리즘은 객체의 모서리나 꼭지점으로부터 추출한 특징벡터를 사용하므로 스케일링, 회전, 조명변화를 가지는 영상에서도 뛰어난 매칭을 수행한다. 그러나 SIFT는 엣지에 의해 특징점을 추출하므로 엣지가 존재하지 않는 영역에서는 원하는 대응점을 찾을 수 없다. 본 연구는 SIFT에 의한 대응 특징점 추출과 매칭 성능을 향상시키기 위한 마커 모양 및 배치 방법을 제안한다. 제안 방법에서 사용한 마커의 모양은 부착 방향에 따라 SIFT 알고리즘에 의해 한 방향으로 우세한 벡터를 검출할 수 있는 반원형(SemiCircle)으로 구성한다. 그리고 대응점 매칭의 성능을 향상시키기 위하여 마커의 방향 배치는 드 브루인 수열(De Bruijn Sequence)을 이용한다. 실험을 통해 제안한 방법이 기존의 방법보다 더 정확한 특징점 검출과 매칭에 효과적임을 증명하였다.
본 논문에서는 한 번의 데이터베이스 스캔으로 빈발항목집합들을 생성할 수 있는 효율적인 알고리즘을 제안한다. 제안하는 알고리즘은 빈발 항목과 그 빈발항목을 포함하고 있는 트랜잭션과의 관계를 나타내는 이분할 그래프(bipartite graph)를 생성한다. 그리고 생성된 이분할 그래프를 이용하여 후보 항목집합들을 생성하지 않고 빈발 항목집합들을 추출할 수 있다. 이분할 그래프는 빈발항목들을 추출하기위해 대용량의 트랜잭션 데이터베이스를 스캔할 때 생성된다. 이분할 그래프는 빈발항목들과 그들이 속한 트랜잭션들 간의 관계를 엣지(edge)로 연결한 그래프이다. 즉, 본 논문에서의 이분할 그래프는 대용량의 데이터베이스에서 쉽게 발견할 수 없는 빈발항목과 트랜잭션의 관계를 검색하기 쉽게 색인(index)화한 그래프이다. 본 논문에서 제안하는 방법은 한 번의 데이터베이스 스캔만을 수행하고 후보 항목집합들을 생성하지 않기 때문에 기존의 방법들보다 빠른 시간에 빈발 항목집합들을 찾을 수 있다.
디지털 디바이스가 범용적으로 보급되면서, 영상을 획득하는 과정에서 다량의 부가적 백색 잡음 노이즈(additive white Gaussian noise, AWGN)가 발생하고 있다. 대부분 알려져 있는 대표적인 디노이징 기법들은 노이즈를 제거하는 것에 초점을 맞추고 있어, 영상정보를 포함하는 디테일 성분들이 노이즈를 제거가 되는 과정에서 비례적으로 없어지게 된다. 그러므로, 제안하는 알고리즘은 영상 디테일을 보존하면서 효과적으로 노이즈를 제거하는 방법을 제시하고자 한다. 제안하는 방법에서는, 노이즈의 랜덤성을 이용하여 엣지 강도 및 엣지 연결성을 이용하여 의미 있는 디테일 성분을 분리하는 것을 목적으로 한다. 결과적으로, 노이즈 수준이 높아져도, 제안하는 방법은 연결된 디테일성분을 효과적으로 추출하기 때문에 타 벤치마크 방법에 비해 나은 디노이징 결과를 보여준다. 또한, 실험결과에서 보듯이, 제안하는 방법은 다양한 노이즈 수준에서도 타 벤치마크 방법들에 비교하여 제안하는 방법은 SSIM(structural similarity index), PSNR(peak signal-to-noise ratio)측면에서 각각 우수한 수치를 보여주었다. 높은 수치의 SSIM의 결과로 알 수 있듯이, 결과 영상들이 인간의 시각인지체계(human visual system, HVS)를 반영하고 있는 것을 확증해 주고 있다.
Recently, popularity of 3D technology has been growing significantly and it has many application parts in the various fields of industry. In order to overcome the limitations of 2D machine vision technologies based on 2D image, we need the 3D measurement technologies. There are many 3D measurement methods as such scanning probe microscope, phase shifting interferometry, confocal scanning microscope, white-light scanning interferometry, and so on. In this paper, we have used the extended depth of focus (EDF) algorithm among 3D measurement methods. The EDF algorithm is the method which extracts the 3D information from 2D images acquired by short range depth camera. In this paper, we propose the EDF algorithm using the edge informations of images and the average values of all pixel on z-axis to improve the performance of conventional method. To verify the performance of the proposed method, we use the various synthetic images made by point spread function(PSF) algorithm. We can correctly make a comparison between the performance of proposed method and conventional one because the depth information of these synthetic images was known. Through the experimental results, the PSNR of the proposed algorithm was improved about 1 ~ 30 dB than conventional method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.