• Title/Summary/Keyword: 엘니뇨남방진동

Search Result 16, Processing Time 0.039 seconds

Interrelation Analysis between ENSO Index and Hydrologic Variables (자료의 표준화를 통한 ENSO 지수와 수문변량의 상관관계분석)

  • Chu, Hyun-Jae;Kim, Tae-Woong;Lee, Jong-Kyu;Wi, Sung-Wook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1520-1524
    • /
    • 2006
  • ENSO(El $Ni\check{n}o$ Southern Oscillation)은 태평양상의 해양과 대기간의 복잡한 상호작용의 일부이며, ENSO 순환(ENSO cycle)의 극한상태인 엘니뇨와 라니냐는 세계적으로 발생하는 홍수와 가뭄 등 자연재해와 많은 연관성을 가지고 있음이 많은 연구를 통하여 알려지고 있다. 우리나라에서도 ENSO와 수문변량들간의 관계를 분석하는 연구가 활발히 진행되고 있는데, 수문자료의 변동계수가 크기 때문에 이를 단순 표준화하여 해석하는데 있어 어려움이 있다. 본 연구에서는 자료의 표준정규분포화를 통하여 ENSO와 우리나라 수문변량들간의 관계를 분석하였다. ENSO를 정량적으로 표준지수화하기 위하여 적도부근 남태평양 Tahiti섬과 오스트레일리아 북부 Darwin 지역에서의 기압차를 월별로 표준화(standardization)한 SOI(Southern Oscillation Index)지수를 이용하였고, 수문자료를 정량적으로 표준지수화하기 위하여 우리나라 23개 기상관측소의 월강수량, 12개 기상관측소의 월평균기온, 월최저기온, 월최고기온 자료를 이용하여 표준정규분포를 가지는 표준정규지수로 환산하였다. 환산된 자료의 계절적 영향을 파악하고자 3개월 단위로 구분하여, 초과확률 등을 이용한 분석을 실시한 결과, 특정지역의 수문변동이 남방진동지수와 유의한 상관관계를 가짐을 확인할 수 있었다. 이러한 결과는 현재 많은 연구가 진행되고 있는 수문기상학적 예측모형의 개발에 유용한 정보를 제공해 줄 수 있을 것이다.

  • PDF

El Niño-Southern Oscillation, Indian Ocean Dipole Mode, a Relationship between the Two Phenomena, and Their Impact on the Climate over the Korean Peninsula (엘니뇨-남방진동, 인도양 쌍극자 모드, 두 현상의 관련성, 그리고 한반도 기후에 대한 영향)

  • Cha, Eun-Jeong
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.35-44
    • /
    • 2007
  • This paper investigated the relationship between El $Ni\widetilde{n}o-Southern$ Oscillation (ENSO) and Indian Ocean Dipole (IOD) mode events and the impacts of these two phenomena on the climate, temperature and precipitation, of the Korean Peninsula. Data gathered from 1954 to 2004 were used for analysis, which included NINO 3 index, IOD index, and monthly mean precipitation and temperature at eleven locations in Korea. Statistical results showed that the IOD and ENSO were significantly correlated in Spring and Fall. It was clearly shown that the distribution of the sea surface temperature in the Indian Ocean has seen the Southern and Northern Oscillation in El $Ni\widetilde{n}o$ year, and Eastern and Western in IOD year. On the other hand, in El $Ni\widetilde{n}o$ you, the mean temperature of the Korea Peninsula was lower than normal in Summer and higher in Winter and its precipitation was more than normal in both Summer and Winter. However, significant correlation was not found in IOD year. In addition, the global atmospheric circulations during the major IOD years are less influential, unlike those of El $Ni\widetilde{n}o$ events.

Seasonal Relationship between El Nino-Southern Oscillation and Hydrologic Variables in Korea (ENSO와 한국의 수문변량들간의 계절적 관계 분석)

  • Chu, Hyun-Jae;Kim, Tae-Woong;Lee, Jong-Kyu;Lee, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.299-311
    • /
    • 2007
  • Climatic abnormal phenomena involving El Nino and La Nina have been frequently reported in recent decades. The interannual climate variability represented by El Nino-Southern Oscillation (ENSO) is sometimes investigated to account for the climatic abnormal phenomena around the world. Although many hydroclimatologists have studied the impact of ENSO on regional precipitation and streamflow, however, there are still many difficulties in finding the dominant causal relationship between them. This relationship is very useful in making hydrological forecasting models for water resources management. In this study, the seasonal relationships between ENSO and hydrologic variables were investigated in Korea. As an ENSO indicator, Southern Oscillation Index (SOI) was used. Monthly precipitation, monthly mean temperature, and monthly dam inflow data were used after being transformed to the standardized normal index. Seasonal relationships between ENSO and hydrologic variables were investigated based on the exceedance probability and distribution of hydrologic variables conditioned on the ENSO episode. The results from the analysis of this study showed that the warm ENSO episode affects increases in precipitation and temperature, and the cold ENSO episode is related with decreases in precipitation and temperature in Korea. However, in some regions, the local relationships do not correspond with the general seasonal relationship.

Effects of El Nino-Southern Oscillation (ENSO) on Tree Growths in Central Korea (한반도 중부지역 수목생장에 미치는 엘니뇨-남방진동(ENSO)의 영향)

  • ;;;N. Pumijumnong
    • The Korean Journal of Quaternary Research
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2001
  • To examine the effects of El Nino-Southern Oscillation (ENSO) on the tree growths of central Korea, tree rings of Korean pine(Pinus koraiensis) , Japanese red pine (Pinus densiflora) and yew (Taxus cuspidata) were analyzed. Korean pine and red pine samples were collected from 4 and 7sites in Sorak Mountain ranges, respectively ; yew from one site in Sobaek Mountain. Correlations between ring-width and monthly temperature data showed generally positive relationships for the Korean pine and yew chronologies, but negative ones for the red pine chronologies. In the analysis of correlation between ring-width and monthly S0 index data, only one Korean pine chronology at the lower Hangaerung valley site, and one red pine chronology at Baekdamjang shelter site showed significant relationships ; negative with April SOI for the former and positive with previous August-September SOI for the latter. The other chronologies at higher elevation sites did not indicate any significant correlations with SOI.

  • PDF

Relationship between EI Ni o/Southern Oscillation and Drought in Korea (엘니뇨/남방진동과 한국의 가뭄과 관계)

  • Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.111-120
    • /
    • 1999
  • The relationship between EI Nino-Southern Oscillation(ENSO) and drought in Korea is investigated using the cross correlation analysis. In this paper, Palmer Drought Severity Index(PDSI) is used as an index of drought and nine ENSO indicators are used. To obtain PDSI for Korea, the PDSI equation is derived using monthly precipitation and temperature in Korea. In addition, ENSO composite percentile analyses for PDSI, precipitation and streamflow in Korea are performed to verify the results of the cross correlation. Results of the cross correlation show that the link between drought in Korea and ENSO is statistically significant with 6% of the variance in PDSI for Korea explained by ENSO. The PDSI is negatively correlated with the equatorial Pacific Sea Surface Temperature and the Sea Level Pressure(SLP) at Darwin leading by about 16 months. However, the relationship of the PDSI with the Southern Oscillation Index and the SLP at Tahiti is positive correlation. The ENSO composite percentile analyses show that drought, precipitation and streamflow in Korea are associated with ENSO during 6 months from December of the ENSO ending year

  • PDF

한반도의 기후변화에 따른 벚꽃 개화일의 변화 경향에 관한 연구

  • Park, Su-Jin;Kim, Hae-Dong;Kim, Hak-Yun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.11a
    • /
    • pp.439-442
    • /
    • 2006
  • 기후변화가 벚꽃과 같은 생물계절현상에 미치는 영향을 조사하고자, 벚꽃의 개화일과 기온과의 상관관계를 비교하여, 각 월별로 특히, 1월, 2월, 3월의 일평균기온, 일최저기온, 일최고기온의 월별 평균 기온과 벚꽃개화일의 비교에서 어느 것이 더 상관관계가 높은지를 보았다. 또한, 1950년대 이후로 크고 작은 엘니뇨의 발생은 13회 정도로 약 $2{\sim}5$년을 주기로 발생하였다. 엘니뇨현상은 남방진동 ENSO 등의 기상현상과 함께 발생한다. 엘니뇨가 발생한 해의 한반도는 겨울철 온도는 높아지고, 겨울철 강수량은 높아지는 경향이 있다. 이러한 엘니뇨현상이 1, 2, 3월의 기온에 어떤 영향을 준다면, 벚꽃의 개화일도 변화할 것이다. 위의 자료를 모두 비교해보고 이들 상호간의 영향관계를 알아낸다면, 앞으로 기온을 통한 벚꽃개화일의 예측이나, 반대로 벚꽃개화일을 통한 기온과 엘니뇨현상 등의 기후변화를 예측해 낼 수 있을 것으로 판단된다.

  • PDF

Statistical Analysis of NOAA/AVHRR High Resolution Weekly SST in the East Sea: Regional Variability and Relationships with ENSO (동해지역 NOAA/AVHRR 고해상도 주평균 해수면 온도의 통계적 분석 : 지역적 변동성과 엘니뇨/남방진동과의 관계성)

  • Kwon, Tae-Yong;Lee, Bang-Yong;Lee, Jeong-Soon
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.361-376
    • /
    • 2001
  • The characteristics of SST variability in the East Sea are analyzed using NOAA/AVHRR weekly SST data with about $0.18^{\circ}{\times}0.18^{\circ}$ resolution ($1981{\sim}2000$) and reconstructed historical monthly SST data with $2^{\circ}{\times}2^{\circ}$ resolution $(1950{\sim}1998)$. The distinct feature of wintertime SST is high variability in the western and eastern parts of $38^{\circ}{\sim}40^{\circ}$ latitudinal band, which are the northern boundary of warm current in the East Sea during winter. However, summertime SST exhibits variability with similar magnitude in the entire region of the East Sea. The analysis of remote correlation also shows that SST in the East Sea is closely correlated with that in the region of Kuroshio in winter, but in summer is related with that in the western and eastern regions of the same latitudes. From these results it is postulated that the SST variability in the East Sea may be related with the variations of East Korean Warm Current and Tsushima Warm Current in winter, but in summer probably with the variations of atmospheric components. In the analysis of ENSO related SST anomaly, a significant negative correlation between SST anomalies in the East Sea and SST anomalies in the tropical Pacific is found in the months of August-October (ASO). The SST in the ASO period shows more significant cooling in E1 $Ni\~{n}o$ events than warming in La $Ni\~{n}a$ events. Also, the regional analysis shows by the Student's t-test that the negative SST anomalies in the E1 $Ni\~{n}o$ events are more significant in the southwestern part of the East Sea.

  • PDF

Variability and Changes of Wildfire Potential over East Asia from 1981 to 2020 (1981-2020년 기간 동아시아 지역 산불 발생 위험도의 변동성 및 변화 특성)

  • Lee, June-Yi;Lee, Doo Young
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.30-40
    • /
    • 2022
  • Wildfires, which occur sporadically and irregularly worldwide, are distinct natural disturbances in combustible vegetation areas, important parts of the global carbon cycle, and natural disasters that cause severe public emergencies. While many previous studies have investigated the variability and changes in wildfires globally based on fire emissions, burned areas, and fire weather indices, studies on East Asia are still limited. Here, we explore the characteristics of variability and changes in wildfire danger over East Asia by analyzing the fire weather index for the 40 years-1981-2020. The first empirical orthogonal function (EOF) mode of fire weather index variability represents an increasing trend in wildfire danger over most parts of East Asia over the last 40 years, accounting for 29% of the total variance. The major contributor is an increase in the surface temperature in East Asia associated with global warming and multidecadal ocean variations. The effect of temperature was slightly offset by the increase in soil moisture. The second EOF mode exhibits considerable interannual variability associated with the El Nino-Southern Oscillation, accounting for 17% of the total variance. The increase (decrease) in precipitation in East Asia during El Nino (La Nina) increases (decreases) soil moisture, which in turn reduces (increases) wildfire danger. This dominant soil moisture effect was slightly offset by the temperature increase (decrease) during El Nino (La Nina). Improving the understanding of variability and changes in wildfire danger will have important implications for reducing social, economic, and ecological losses associated with wildfire occurrences.

Global Environmental Changes and the Antarctic (지구환경변화와 남극)

  • Lee, Bang-Yong;Chung, Ho-Sung;Kang, Sung-Ho;Chang, Soon-Keun
    • Journal of the Korean earth science society
    • /
    • v.24 no.3
    • /
    • pp.216-233
    • /
    • 2003
  • This study delineates the phenomena related with global environmental changes such as global warming, ozone depletion, and El Ni${\tilde{n}}$o/Southern Oscillation (ENSO) noted in the Antarctic. Retreat of ice cliffs, glaciers, and calving of ice shelves indicate the effects of recently aggravated global warming. The ice cliff located at Marian Cove, King George Island, South Shetland Islands off the Antarctic Peninsula has been observed to be retreating faster in the last 7 years than in the previous 38 years since 1956. There are some indications of temperature and precipitation changes associated with ENSO around King Sejong Station. The regression analyses indicate significant trends such as a decrease in the total amount of ozone and an increase in ultraviolet radiation which was seen by a satellite (TOMS-EUV) in September and October which correspond to ozone-hole season over King Sejong Station. Increase of UV radiation due to the ozone depletion in the Antarctic has changed the growth rate of marine organisms. It may also result in changes to the productivity, biomass, and species composition of marine organisms which can affect the whole marine ecosystem. The recent ice-core drilling over Lake Vostok has been reviewed with emphasis on the four cycles of glacial stages over the past 420,000 years. It is time to show more interest in mainland Antarctica through investigations of the coring and vast ice sheet, terrestrial geology, and upper atmospheric sciences in order to understand the past environmental changes and to predict possible changes to the environment in the future.