• Title/Summary/Keyword: 엔트로피 모드

Search Result 22, Processing Time 0.024 seconds

Design of an Efficient Binary Arithmetic Encoder for H.264/AVC (H.264/AVC를 위한 효율적인 이진 산술 부호화기 설계)

  • Moon, Jeon-Hak;Kim, Yoon-Sup;Lee, Seong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.66-72
    • /
    • 2009
  • This paper proposes an efficient binary arithmetic encoder for CABAC which is used one of the entropy coding methods for H.264/AVC. The present binary arithmetic encoding algorithm requires huge complexity of operation and data dependency of each step, which is difficult to be operated in fast. Therefore, renormalization exploits 2-stage pipeline architecture for efficient process of operation, which reduces huge complexity of operation and data dependency. Context model updater is implemented by using a simple expression instead of transIdxMPS table and merging transIdxLPS and rangeTabLPS tables, which decreases hardware size. Arithmetic calculator consists of regular mode, bypass mode and termination mode for appearance probability of binary value. It can operate in maximum speed. The proposed binary arithmetic encoder has 7282 gate counts in 0.18um standard cell library. And input symbol per cycle is about 1.

A Frame-based Coding Mode Decision for Temporally Active Video Sequence in Distributed Video Coding (분산비디오부호화에서 동적비디오에 적합한 프레임별 모드 결정)

  • Hoangvan, Xiem;Park, Jong-Bin;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.510-519
    • /
    • 2011
  • Intra mode decision is a useful coding tool in Distributed Video Coding (DVC) for improving DVC coding efficiency for video sequences having fast motion. A major limitation associated with the existing intra mode decision methods, however, is that its efficiency highly depends on user-specified thresholds or modeling parameters. This paper proposes an entropy-based method to address this problem. The probabilities of intra and Wyner?Ziv (WZ) modes are determined firstly by examining correlation of pixels in spatial and temporal directions. Based on these probabilities, entropy of the intra and the WZ modes are computed. A comparison based on the entropy values decides a coding mode between intra coding and WZ coding without relying on any user-specified thresholds or modeling parameters. Experimental results show its superior rate-distortion performance of improvements of PSNR up to 2 dB against a conventional Wyner?Ziv coding without intra mode decision. Furthermore, since the proposed method does not require any thresholds or modeling parameters from users, it is very attractive for real life applications.

A Self-Timed Ring based Lightweight TRNG with Feedback Structure (피드백 구조를 갖는 Self-Timed Ring 기반의 경량 TRNG)

  • Choe, Jun-Yeong;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.268-275
    • /
    • 2020
  • A lightweight hardware design of self-timed ring based true random number generator (TRNG) suitable for information security applications is described. To reduce hardware complexity of TRNG, an entropy extractor with feedback structure was proposed, which minimizes the number of ring stages. The number of ring stages of the FSTR-TRNG was determined to be a multiple of eleven, taking into account operating clock frequency and entropy extraction circuit, and the ratio of tokens to bubbles was determined to operate in evenly-spaced mode. The hardware operation of FSTR-TRNG was verified by FPGA implementation. A set of statistical randomness tests defined by NIST 800-22 were performed by extracting 20 million bits of binary sequences generated by FSTR-TRNG, and all of the fifteen test items were found to meet the criteria. The FSTR-TRNG occupied 46 slices of Spartan-6 FPGA device, and it was implemented with about 2,500 gate equivalents (GEs) when synthesized in 180 nm CMOS standard cell library.

Image-adaptive lossless image compression (영상 적응형 무손실 이미지 압축)

  • OH Hyun-Jong;Won Jong-woo;Jang Euee S.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.61-64
    • /
    • 2003
  • 무손실 이미지 압축은 (Lossless Image Compression)은 손실이미지 압축(Lossy Image Compression)에 비해, 압축률(compression ratio)은 떨어지지만, 반면 원이미지와 복원이미지가 완전히 일치하므로, 원인이미지의 품질을 그대로 유지학 수 있다. 따라서, 이미지의 품질(Quality)과 압축효율(compression ratio)은 서로 상반된 관계에 있으며, 지금도 좀 더 놀은 압축효과를 얻으려는 여러 무손실 압축 방법이 발표되고 있다. 무손실 이미지 압축은 이미지의 정확성과 정밀성이 요구되는, 의료영양분야에서 가장 널리 쓰이고 있으며, 그밖에, 원본이미지를 기본으로 다른 이미지프로세싱이 필요한 경우, 압축 복원을 반복적으로 수행할 필요가 있을 때, 기타 사진 예술분야, 원격 영상 등 정밀성이 요구되는 분양에서 쓰이고 있다. [7]. 무손실 이미지 압축의 가장 대표적인 CALIC[3]과 JPEG_LS[2]를 들 수 있다. CALIC은 비교적 높은 압축률을 나타내지만, 3-PASS의 과정을 거치는 복잡도가 지적되고 있다. 반면 JPEG-LS는 압축률은 CALIC에 미치지 못하지만 빠른 코딩/디코딩 속도를 보인다. 본 논문에서는 여거 가지의 예측 모드를 두어, 블록단위별로 주변 CONTEXT에 따라, 최상의 예측 모드를 판단하여, 이를 적용, 픽셀의 여러 값을 최소화하였다. 그 후 적응산술 부호기(Adaptive arithmetc coder)를 이용하여, 인코딩을 하였다. 이때 최대 에러값은 64를 넘지 않게 했으며, 또한 8*8블록별로 에러의 최대값을 측정하여 그 값을 $0\~7$까지의 8개의 대표값으로 양자화하는 방법을 통하여 그에 따라 8개의 보호화 심볼 모델중 알맞은 모델에 적용하였다. 이를 통해, 그 소화값의 확률 구간을 대폭 넓힘으로써, 에러 이미지가 가지고 있는 엔트로피에 좀 근접하게 코딩을 할 수 있게 되었다. 이 방법은 실제로 Arithmetic Coder를 이용하는 다른 압축 방법에 그리고 적용할 수 있다. 실험 결과 압축효율은 JPEG-LS보다 약 $5\%$의 압축 성능 개선이 있었으며, CALIC과는 대등한 압축률을 보이며, 부호화/복호화 속도는 CALIC보다 우수한 것으로 나타났다.

  • PDF

The Hardware Design of CABAC for High Performance H.264 Encoder (고성능 H.264 인코더를 위한 CABAC 하드웨어 설계)

  • Myoung, Je-Jin;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.771-777
    • /
    • 2012
  • This paper proposes a binary arithmetic encoder of CABAC using a Common Operation Unit including the three modes. The binary arithmetic encoder performing arithmetic encoding and renormalizer can be simply implemented into a hardware architecture since the COU is used regardless of the modes. The proposed binary arithmetic encoder of CABAC includes Context RAM, Context Updater, Common Operation Unit and Bit-Gen. The architecture consists of 4-stage pipeline operating one symbol for each clock cycle. The area of proposed binary arithmetic encoder of CABAC is reduced up to 47%, the performance of proposed binary arithmetic encoder of CABAC is 19% higher than the previous architecture.

The Analysis of Cipher Padding Problem for Message Recovery Security Function of Honey Encryption (허니암호의 메시지 복구보안 기능을 위한 암호패딩 문제점 분석)

  • Ji, Changhwan;Yoon, Jiwon
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.637-642
    • /
    • 2017
  • Honey Encryption (HE) is a technique to overcome the weakness of a brute-force attack of the existing password-based encryption (PBE). By outputting a plausible plaintext even if the wrong key is entered, it provides message recovery security which an attacker can tolerate even if the attacker tries a brute-force attack against a small entropy secret key. However, application of a cipher that requires encryption padding to the HE present a bigger problem than the conventional PBE method. In this paper, we apply a typical block cipher (AES-128) and a stream cipher (A5 / 1) to verify the problem of padding through the analysis of the sentence frequency and we propose a safe operation method of the HE.

Failure Modes and Effects Analysis by using the Entropy Method and Fuzzy ELECTRE III (엔트로피법과 Fuzzy ELECTRE III를 이용한 고장모드영향분석)

  • Ryu, Si Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.229-236
    • /
    • 2014
  • Failure modes and effects analysis (FMEA) is a widely used engineering tool in the fields of the design of a product or a process to improve its quality or performance by prioritizing potential failure modes in terms of three risk factors-severity, occurrence, and detection. In a classical FMEA, the risk priority number is obtained by multiplying the three values in 10 score scales which are evaluated for the three risk factors. However, the drawbacks of the classical FMEA have been mentioned by many previous researchers. As a way to overcome these difficulties, this paper suggests the ELECTRE III that is a representative technique among outranking models. Furthermore, fuzzy linguistic variables are included to deal with ambiguous and imperfect evaluation process. In addition, when the importances for the three risk factors are obtained, the entropy method is applied. The numerical example which was previously studied by Kutlu and Ekmekio$\breve{g}$lu(2012), who suggested the fuzzy TOPSIS method along with fuzzy AHP, is also adopted so as to be compared with the results of their research. Finally, after comparing the results of this study with that of Kutlu and Ekmekio$\breve{g}$lu(2012), further possible researches are mentioned.

Design of video encoder using Multi-dimensional DCT (다차원 DCT를 이용한 비디오 부호화기 설계)

  • Jeon, S.Y.;Choi, W.J.;Oh, S.J.;Jeong, S.Y.;Choi, J.S.;Moon, K.A.;Hong, J.W.;Ahn, C.B.
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.732-743
    • /
    • 2008
  • In H.264/AVC, 4$\times$4 block transform is used for intra and inter prediction instead of 8$\times$8 block transform. Using small block size coding, H.264/AVC obtains high temporal prediction efficiency, however, it has limitation in utilizing spatial redundancy. Motivated on these points, we propose a multi-dimensional transform which achieves both the accuracy of temporal prediction as well as effective use of spatial redundancy. From preliminary experiments, the proposed multi-dimensional transform achieves higher energy compaction than 2-D DCT used in H.264. We designed an integer-based transform and quantization coder for multi-dimensional coder. Moreover, several additional methods for multi-dimensional coder are proposed, which are cube forming, scan order, mode decision and updating parameters. The Context-based Adaptive Variable-Length Coding (CAVLC) used in H.264 was employed for the entropy coder. Simulation results show that the performance of the multi-dimensional codec appears similar to that of H.264 in lower bit rates although the rate-distortion curves of the multi-dimensional DCT measured by entropy and the number of non-zero coefficients show remarkably higher performance than those of H.264/AVC. This implies that more efficient entropy coder optimized to the statistics of multi-dimensional DCT coefficients and rate-distortion operation are needed to take full advantage of the multi-dimensional DCT. There remains many issues and future works about multi-dimensional coder to improve coding efficiency over H.264/AVC.

LOFAR/DEMON grams compression method for passive sonars (수동소나를 위한 LOFAR/DEMON 그램 압축 기법)

  • Ahn, Jae-Kyun;Cho, Hyeon-Deok;Shin, Donghoon;Kwon, Taekik;Kim, Gwang-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.38-46
    • /
    • 2020
  • LOw Frequency Analysis Recording (LOFAR) and Demodulation of Envelop Modulation On Noise (DEMON) grams are bearing-time-frequency plots of underwater acoustic signals, to visualize features for passive sonar. Those grams are characterized by tonal components, for which conventional data coding methods are not suitable. In this work, a novel LOFAR/DEMON gram compression algorithm based on binary map and prediction methods is proposed. We first generate a binary map, from which prediction for each frequency bin is determined, and then divide a frame into several macro blocks. For each macro block, we apply intra and inter prediction modes and compute residuals. Then, we perform the prediction of available bins in the binary map and quantize residuals for entropy coding. By transmitting the binary map and prediction modes, the decoder can reconstructs grams using the same process. Simulation results show that the proposed algorithm provides significantly better compression performance on LOFAR and DEMON grams than conventional data coding methods.

Hardware Design of High Performance CAVLC Encoder (H.264/AVC를 위한 고성능 CAVLC 부호화기 하드웨어 설계)

  • Lee, Yang-Bok;Ryoo, Kwang-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.3
    • /
    • pp.21-29
    • /
    • 2012
  • This paper presents optimized searching technique to improve the performance of H.264/AVC. By using the proposed forward and backward searching algorithm, redundant cycles of latency for data reordering can be removed. Furthermore, in order to reduce the total number of execution cycles of CAVLC encoder, early termination mode and two stage pipelined architecture are proposed. The experimental result shows that the proposed architecture needs only 36.0 cycles on average for each $16{\times}16$ macroblock encoding. The proposed architecture improves the performance by 57.8% than that of previous designs. The proposed CAVLC encoder was implemented using Verilog HDL and synthesized with Magnachip $0.18{\mu}m$ standard cell library. The synthesis result shows that the gate count is about 17K with 125Mhz clock frequency.