• 제목/요약/키워드: 엔터프라이즈

검색결과 362건 처리시간 0.016초

저장시스템의 응답 시간 개선을 위한 효율적인 이중 큐 전략 (An Efficient Dual Queue Strategy for Improving Storage System Response Times)

  • 이현섭
    • 사물인터넷융복합논문지
    • /
    • 제10권3호
    • /
    • pp.19-24
    • /
    • 2024
  • 최근 빅데이터, 클라우드 컴퓨팅, 인공지능 등 대용량 데이터 처리 기술의 발전에 따라 데이터센터와 엔터프라이즈 환경에서 고성능 저장장치에 대한 요구가 증가하고 있다. 특히 저장장치의 빠른 데이터 응답 속도는 전체 시스템 성능을 좌우하는 핵심 요소이다. 이에 NVMe(Non-Volatile Memory Express) 인터페이스 기반 SSD(Solid State Drive)가 주목받고 있으나, 다수 호스트의 대량 데이터 입출력 요청을 동시에 처리하는 과정에서 새로운 병목 현상이 발생하고 있다. SSD는 일반적으로 호스트 요청을 내부 큐에 순차적으로 쌓아 처리하는 방식을 취한다. 이때 긴 전송 길이 요청이 먼저 처리되면 짧은 요청들이 장기간 대기하여 평균 응답 시간이 증가한다. 이 문제를 해결하기 위해 데이터 전송 시간제한과 데이터 분할 전송 방법이 제안되었으나 근본적인 해결책이 되지 못했다. 본 논문에서는 저장장치 내부 데이터 처리 스케줄링 전략인 DQBS(Dual Queue Based Scheduling Scheme)를 제안한다. 이 방식은 이중 큐 기반의 스케줄링 전략으로 하나의 큐에서는 요청 순서를, 다른 큐에서는 전송 길이를 기준으로 데이터 전송 순서를 관리한다. 그리고 요청 시간과 전송 길이를 종합적으로 고려하여 효율적인 데이터 전송 순서를 결정한다. 이를 통해 대기 시간이 긴 요청과 짧은 요청을 균형있게 처리할 수 있어 전체 평균 응답 시간을 단축시킬 수 있다. 실제 시뮬레이션 결과, 제안 기법은 기존 순차 처리 방식 대비 월등히 향상된 성능을 보였다. 본 연구는 고성능 SSD 환경에서 데이터 전송 효율을 극대화하는 스케줄링 기법을 제시하여, 차세대 고성능 저장 시스템의 발전에 기여할 수 있을 것으로 기대된다.

디지털에서 인텔리전트(D2I)달성을 위한 RPA의 구현 (Implementing RPA for Digital to Intelligent(D2I))

  • 최동진
    • 경영정보학연구
    • /
    • 제21권4호
    • /
    • pp.143-156
    • /
    • 2019
  • 혁신의 유형은 단순화, 정보화, 자동화, 지능화로 분류할 수 있고 지능화는 혁신의 최상위 단계이며 RPA는 지능화의 하나로 볼 수 있다. 인공지능을 가미한 소프트웨어 로봇인 RPA(Robotic Process Automation)는 단순 반복적인 대량의 트랜젝션 처리 작업을 하는 곳에 적합한 지능화 사례이다. 이미 국내의 많은 기업들에서도 현재 운영 중에 있는 RPA는 강한조직 문화의 필요성이 증대되면서 자발적인 리더십, 강한 팀워크와 실행력, 프로답게 일하는 문화가 강조되는 상황에서 자연스럽게 핵심적 업무에 집중하기 위해 필요한 것이 무엇인지를 찾고자 하는 필요성에 따라 자연스럽게 도입이 검토되고 있다. 로봇 프로세스 자동화 또는 RPA는 구조적인 작업을 빠르고 효율적으로 처리하는 것을 목표로 인간 업무를 교체하는 기술이다. RPA는 ERP 시스템이나 생산성 도구와 같은 소프트웨어를 사용하여 사람을 모방한 소프트웨어 로봇을 통해 구현된다. RPA 로봇은 컴퓨터에 설치된 소프트웨어로 작동 원리에 의해 로봇으로 불리다. RPA는 백엔드를 통해 다른 IT 시스템과 통신하는 기존 소프트웨어와 달리 프런트 엔드를 통해 IT 시스템 전체에 통합된다. 실제로 이것은 소프트웨어 로봇이 인간과 똑 같은 방식으로 IT 시스템을 사용하고 정확한 단계를 반복하며 시스템의 API(Application Programming Interface)와 통신하는 대신 컴퓨터 화면의 이벤트에 반응하는 것을 의미한다. 다른 소프트웨어와 의사소통하기 위해 인간을 모방하는 소프트웨어를 설계하는 것은 직관력이 떨어질 수 있지만 이러한 접근 방식에는 여러 가지 이점이 있다. 첫째, 타사 응용 프로그램에 대한 개방성과 상관없이 사람이 사용하는 거의 모든 소프트웨어와 RPA를 통합할 수 있다. 많은 기업의 IT 시스템은 공통적으로 적용되는 API가 많지 않음으로 독점적이며 다른 시스템과의 통신 기능이 크게 제한되나 RPA는 이 문제를 해결한다. 둘째, RPA는 매우 짧은 시간 내에 구현될 수 있다. 엔터프라이즈 소프트웨어 통합과 같은 전통적인 소프트웨어 개발 방식은 상대적으로 많은 시간이 소요되지만 RPA는 2~4주의 상대적으로 짧은 시간에 구현할 수 있다. 셋째, 소프트웨어 로봇을 통해 자동화된 프로세스는 시스템 사용자가 쉽게 수정할 수 있다. 기존 방식은 작동 방식을 크게 수정하기 위해 고급 코딩 기술이 필요한 반면에 RPA는 상대적으로 단순한 논리 문장을 수정하거나 인간이 수행하는 프로세스의 화면 캡처 또는 그래픽 프로세스 차트 수정을 통해 지시받을 수 있다. 이로 인해 RPA는 매우 다양하고 유연하다. 이러한 RPA는 기업에서 추구하는 D2I(Digital to Intelligence)의 좋은 적용 사례이다.