• Title/Summary/Keyword: 엔진 추력

Search Result 398, Processing Time 0.02 seconds

Thrust and Propellant Mixture Ratio Control of Open Type Liquid Propellant Rocket Engine (개방형 액체추진제로켓엔진의 추력 및 혼합비 제어)

  • Jung, Young-Suk;Lee, Jung-Ho;Oh, Seung-Hyub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1143-1148
    • /
    • 2007
  • LRE(Liquid propellant Rocket Engine) is one of the important parts to control the motion of rocket. For operation of rocket in error boundary of the set-up trajectory, it is necessarily to control the thrust of LRE according to the required thrust profile and control the mixture ratio of propellants fed into combustor for the constant mixture ratio. It is not easy to control thrust and mixture ratio of propellants since there are co-interferences among the components of LRE. In this study, the dynamic model of LRE was constructed and the dynamic characteristics were analyzed with control system as PID control and PID+Q-ILC(Iterative Learning Control with Quadratic Criterion) control. From the analysis, it could be observed that PID+Q-ILC control logic is more useful than standard PID control system for control of LRE.

  • PDF

Aerodynamic characteristics of Air Inlet Model for Ramjet Engine Mach Number of 2.2 (Mach2.2 램제트엔진 항공흡입구 모형의 공기역학적 특성)

  • 박종호;신완순;신필권;박용철;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.12-12
    • /
    • 1998
  • 무기체계의 추진체로서 고체 로켓트 추진기관이 제작의 용이성, 구조의 간단성, 이에 따른 저렴한 제작비, 그리고 고 신뢰도 확보가능 등의 여러 장점으로 대부분의 현존 전술 유도무기에 채택되어 사용되어 오고 있으나 대응, 방어 무기체계의 빠른 발전으로 이에 따른 새로운 추진기관의 유도무기체제가 요구되고 있다. 램제트 기관은 공기흡입추진기관으로 상대적으로 높은 비추력(1000-2000s)과 추력 중량비(∼20)을 가지며, 이로 인해 기존의 로켓 엔진에 비해 4-5배의 성능을 낼 수 있으며, 초음속 장거리 비행에 적합하다며, 또한 높은 속도영역까지 운용가능하고 구조가 비교적 간단하다.

  • PDF

Effect of Combustion Chamber Pressure to Specific Impulse of Liquid Rocket Engine (액체로켓엔진에서 연소압이 비추력에 미치는 영향)

  • Cho, Won-Kook;Park, Soon-Young;Seol, Woo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3154-3158
    • /
    • 2008
  • A liquid rocket engine performance has been analyzed as a function of combustion pressure with LOx/RP-1R. The present method is verified by comparing the specific impulse for various combustion pressure with given pump head model. The optimal combustion pressure is between 150 bar and 200 bar for given efficiencies. Both the optimal combustion pressure and the specific impulse increase for increased turbine efficiency. The optimal combustion pressure decreases and the specific impulse increases for increased combustion efficiency. The pump efficiency and the turbine inlet temperature have the same qualitative effect as the turbine efficiency.

  • PDF

Evaluation on the Characteristics of Liquefied Natural Gas as a Fuel of Liquid Rocket Engine (액체로켓엔진 연료로서 액화천연가스 특성 평가)

  • Han, Poong-Gyoo;NamKoung, Hyuck-Joon;Kim, Kyoung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.66-73
    • /
    • 2004
  • As a rocket propellent of hydrocarbon fuels, the characteristics of liquefied natural gas was evaluated with the viewpoint of the constituents and content, the cooling performance as a coolant, and characteristic velocity and specific impulse as parameters of the engine performance. Content of methane was a principal factor to determine the characteristics as a rocket propellant and more than 90% of it was needed as a fuel and coolant in the regenerative cooled liquid rocket engine. Some constituents of the liquefied natural gas can be frozen by the pre-cooling of the pipe lines, therefore they can be a factor disturbing the normal working of engine. In case the content of methane is around 90% in the liquefied natural gas, a normalized stoichiometric O/F mixture ratio of 0.75 is suggested for a nominal operation condition to get the maximum specific impulse and characteristic velocity.

A Preliminary Configuration Design of Methane/Oxygen Bipropellant Small-Rocket-Engine through Theoretical Performance Analysis (이론성능해석에 의한 메탄/산소 이원추진제 소형로켓엔진의 예비형상설계)

  • Bae, Seong Hun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • Design parameters required for Methane/oxygen bipropellant small-rocket-engine were derived through a theoretical performance analysis. The theoretical performance of the rocket engine was analyzed by using CEA and optimal propellant mixture ratio, characteristic length, and optimal expansion ratio were calculated by assuming chemical equilibrium. A coaxial-type swirl injector was chosen because of its outstanding atomization performance and high combustion efficiency compared to other types of injector and also a bell nozzle with 80% of its full length was designed. The rocket engine configuration with 1.72 MPa of chamber pressure, 0.18 kg/s in total propellant mass flow, and O/F ratio of 2.7 was proposed as a ground-firing test model.

Experimental Investigation of the LRE Thrust Chamber Regenerative Cooling(II) (액체로켓엔진 추력실의 재생냉각에 관한 실험적 연구 (II))

  • Kim, Jung-Hun;Jeong, Hea-Seung;Park, Hee-Ho;Park, Kye-Seung;Kim, Yoo;Moon, Il-Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.53-56
    • /
    • 2003
  • This paper describes the general design procedure of cooling system for liquid rocket engine(LRE). From this design logic, cooling channels are designed and fabricated. The measured heat flux from firing test is similar to the heat flux predicted by design logic. Therefore, the proposed design procedure of cooling channel can be applied to real LRE system. Also the result of firing test indicates that combustion pressure and mixture ratio have an influence on the heat flux to be produced in combustion chamber.

  • PDF

Study for combustion characteristic according to the O/F ratio of low thrust rocket engine using green propellant (친환경 추진제를 사용하는 저추력 엑체로켓엔진의 혼합비에 따른 연소 특성)

  • Jeon, Jun-Su;Kim, Young-Mun;Hwang, O-Sik;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.134-137
    • /
    • 2009
  • Combustion tests of a low thrust rocket engine was performed to get combustion characteristics, which used a high concentrated hydrogen peroxide and kerosene as the oxidizer and fuel. The engine consisted of multi injector(six coaxial swirl injectors), chamber, nozzle and catalyst ignition system. The test was carried out by changing O/F ratio from 3.8 to 11.0. The experimental results showed that combustion efficiency was highest at O/F ratio from 5 to 6 and pressure fluctuations of all the range were lower than 5%.

  • PDF

Mechanical Isolation Method for an Air Intake Duct with Vertical Temperature Gradient (수직 온도구배를 갖는 공기 흡입 덕트의 기계적 격리기법)

  • Jung, Chihoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.87-93
    • /
    • 2016
  • In a Direct Connect(DC) mode altitude engine test, a labyrinth seal is set up between an air intake duct and an engine. The labyrinth seal plays a key role in mechanically isolating them, which contributes to the accurate measurement of thrust and the other component forces. However, when high vertical temperature gradient is generated in the supplied air in the duct, the isolation breaks down. In this paper, a labyrinth seal control device is designed and installed in an effort to eliminate the issue. Test result shows the device successfully gets rid of the contact problem even when high vertical temperature gradient is produced.

Ground Firing Test Facility of Hybrid Rocket Engine (하이브리드로켓엔진 지상연소시험 설비)

  • Kim, Soo-Jong;Kim, Gi-Hun;Cho, Jung-Tae;Cho, Min-Kyoung;Do, Gyu-Sung;So, Jung-Soo;Heo, Jun-Young;Lee, Jung-Pyo;Park, Su-Hayng;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.251-254
    • /
    • 2008
  • Ground firing test facility and test field for firing test of hybrid rocket engine were constructed. Ground firing test facility were composed of hybrid rocket engine, thrust stand, oxidizer storage/supply system, control system and data acquisition system. Firing tests of thrust 50 kgf class were conducted. Stable performance data was obtained and operational reliability of ground firing test facility were found.

  • PDF

A Study on EASY5 Modeling for Performance Analysis of Turbofan Engine (터보팬 엔진의 성능해석을 위한 EASY5 모델링에 관한 연구)

  • 공창덕;강명철;기자영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.29-30
    • /
    • 2002
  • 본 연구에서는 Boeing사에서 개발한 EASY5 프로그램을 이용하여 터보팬 엔진을 모델링하고 성능해석을 수행하였다. 연구대상 엔진인 BR715-56 엔진은 추력이 20,000lbf급인 2 스풀 터보팬 엔진으로 분리흐름(Separate Flow) 형이다. 엔진은 팬, 압축기, 연소기, 저압터어빈, 압축기터어빈, 팬 노즐 및 Core 노즐로 구성되어 있으며 Station No.는 Fig 1과 같다. 연구에 사용된 EASY5 프로그램은 동역학 시스템을 모델링하고 해석하는 프로그램으로, 제공되는 라이브러리 구성품을 이용하여 보다 쉽게 동적 시스템을 모델링할 수 있다. 또한 Steady-State Solver를 이용하여 정적 평형상태를 빠른 시간에 찾을 수 있어 보다 빠른 해석을 수행할 수 있다. 또한 해석된 동역학 모델을 FORTRAN이나 C 코드로 생성하여 제공함으로써 프로그램의 수정이나 보완이 용이하고, 제공되지 않은 시스템의 라이브러리 구성품의 경우에는 사용자 정의 코드를 만들어 사용함으로써 프로그램의 기능을 확장할 수 있다. EASy5는 대표적인 제어기 설계 소프트웨어인 MATLAB, MATRIX-x와의 호환도 가능하며 NASTRAN등과 같은 유한요소 해석 프로그램과의 데이터 공유도 가능하여 보다 폭 넓은 시스템 모델링과 제어기 설계도 쉽게 할 수 있다.

  • PDF