• Title/Summary/Keyword: 엔진 내부 유동

Search Result 129, Processing Time 0.027 seconds

Numerical Analysis on Radiative Heating of a Plume Base in Liquid Rocket Engine (플룸에 의한 액체로켓 저부면 복사 가열 해석)

  • Sohn Chae Hoon;Kim Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.85-91
    • /
    • 2005
  • Radiative heating of a liquid rocket base plane due to plume emission is numerically investigated. Calculation of flow and temperature fields around rocket nozzle precedes and thereby realistic plume shape and temperature distribution inside the plume are obtained. Based on the calculated temperature field, radiative transfer equation is solved by discrete ordinate method. With the sample rocket plume, the averaged radiative heat flux reaching the base plane is calculated about 5 kw/m$^{2}$ at the flight altitude of 10.9 km. This value is small compared with radiative heat flux caused by constant-temperature (1500 K) plume emission, but it is not negligibly small. At higher. altitude (29.8km), view factor between the base plane and the exhaust plume is increased due to the increased expansion angle of the plume. Nevertheless, the radiative heating disappears since the base plane is heated to high temperature (above 1000 K due to convective heat transfer.

Probabilistic Approach for Fighter Inlet Hammershock Design Pressure (전투기 흡입구 해머쇼크 설계압력에 대한 확률론적 접근법)

  • Bae, Hyo-gil;Lee, Hoon Sik;Kim, Yun-mi;Jeong, In Myon;Lee, SangHyo;Cho, Dae-yeong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.72-78
    • /
    • 2019
  • Inlet hammershock is the critical loads condition for designing the inlet duct structure of a fighter. The sudden flow reduction in engine compressor causes inlet hammershock with high pressure. The traditional method was used to combine extreme conditions (maximum speed, sea level altitude, and cold day) to analyze this compression wave inlet hammershock pressure. However, after the 90s there have been papers that presented the probabilistic approach for the inlet hammershock to achieve the appropriate design pressure. This study shows how to analyze the inlet hammershock pressure by making practical use of the Republic of Korea Air Force real flight usage data under probabilistic approach and then analyze approximately 30% decreased inlet hammershock pressure compared with the traditional valve.

Design on the interfacing between auto-pilot and water-jet drive system (Auto pilot 와 water jet drive system 간의 Interface 설계)

  • Jin, Hyong-Du;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.535-538
    • /
    • 2009
  • Auto Pilot is the system which move automatically the vessel through locating operation mode to automatic after entering operating course using a electronic chart or plotter. And water jet is the a propulsion system that make a power to push the vessel through spouting the accelerated water which is absolbed by the hole in the bottom of vessel. The water jet receive the effect of the depth of water lowly, it's acceletion efficiency is higher under high speed and have an advantage on vibrating and floating sound, so it's demand is increasing as new propulsion system. However, the signal systems of auto Pilot and water jet are defferant, we need the system to communicate between each system. We propose the interface system which communicate between Auto pilot and water jet efficiently in this journal.

  • PDF

Shield Ratio and Thrust Performance Analysis According to The S-Type Nozzle of The Centerline Shape (S-형 노즐 형상의 중심선 형태에 따른 차폐율과 추력 성능 해석)

  • Jin, Juneyub;Park, Youngseok;Kim, Jaewon;Lee, Changwook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.42-55
    • /
    • 2021
  • In this study, the effect of nozzle performance according to the selection of the center line equation. Three of S-type nozzles and three of double S-type nozzles were designed using the curve equation and design parameters, and the nozzle shielding performance was evaluated using the shielding ratio definition. In order to analyze the internal flow of the nozzle, the characteristics of the velocity distribution and pressure distribution were studied, and the nozzle performance was evaluated through the total thrust ratio(f) and the nozzle insulation efficiency coefficient(η). On the other hand, the centerline with a sharply change in curvature at the entrance has a low nozzle performance and a high shielding rate. The double S-type nozzle is excellent nozzle performance and shielding rate by using a smooth centerline at the first curvature.

Performance Analysis of Liquid Pintle Thruster Using Quasi-one-dimensional Multi-phase Reaction Flow: Part II. Thruster Performance Characteristics (준 일차원 다상 반응유동 기법을 이용한 케로신/과산화수소 액체 핀틀 추력기 성능해석 연구: Part II 추력기 성능 특성)

  • Kang, Jeongseok;Bok, Janghan;Sung, Hong-Gye;Kwon, Minchan;Heo, JunYoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.78-84
    • /
    • 2020
  • The performance of pintle thruster is analyzed by using the pintle thruster performance analysis model which integrating the element models introduced in Part I. To verify the performance analysis, the results of the developed program are compared with the experimental data of kerosene/hydrogen peroxide liquid pintle thrusters. Based on the results, the characteristics of the pintle thruster are analyzed. The sensitivity analysis is performed to investigate the effect of thruster shape and operation parameters on performance characteristics using both OAT and scatter plot methods. The four performance parameters such as droplet diameter, film flow rate, O/F ratio, and nozzle throat diameter are evaluated to investigate their effects on characteristic speed, combustor pressure, and specific thrust.

Basic Study on 250KW-class IoT Electric Heater for Ship Fuel Heating (선박연료 가열용 250KW급 판형 IoT 전기히터의 기초연구)

  • Jang, Sung-Cheol
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.3
    • /
    • pp.63-68
    • /
    • 2021
  • Domestic electric heater manufacturers are focusing on technology development to improve the efficiency of existing products. The electric heater for ship fuel is large in size and has high difficulty in miniaturization/high efficiency, so there are not many companies that try to develop technology yet. The existing electric heater has a structure of low heating efficiency because the contact time with the heat exchange tube of the heating medium is very short because the flow path of the ship engine fuel is monotonous. Since it is manufactured in a tubular shape, the volume is very large regardless of the heating efficiency. As a result, the tubular electric heater device applied by overseas advanced companies has difficulty in maintaining and repairing because it is necessary to decompose all tubular heaters when a specific part of the inside is damaged and if the heat exchange tube is damaged, all the heat exchange tubes must be decomposed. In this study, a basic study on plate type electric heaters capable of heating 10 tons of ship engine fuel per hour and setting a maximum temperature of up to 150℃ was conducted through a 250kW capacity plate type electric heater.

Computational Analysis on the Control of Droplet Entrained in the Exhaust from the Spray Type Scrubber system (스프레이형 스크러버의 배출가스에 포함된 액적의 제어방법에 관한 전산해석적 연구)

  • Lee, Chanhyun;Chang, Hyuksang;Koo, Seongmo
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.191-199
    • /
    • 2015
  • The SOx emission from the ship diesel engines will do a negative influence to the human health and the environment. To reduce the negative environmental effect of the SOx emission caused by the high traffic of ship movements, the SECA (SOx emission control area) has been set on several province around world to carry out the severe emissions control and to meet the emissions control standard. To cut down the SOx emission from the ships, the wet type scrubber is being used widely. In this work, we prepared a numerical model to simulate the spray type scrubber to study the motion of liquid droplets in the flow of the scrubber. For the analysis, the CFD (computational fluid dynamics) method was adopted. As a special topic of the study, we designed the wave plate type of mist eliminator to check the carry over of the uncontrolled water droplet to the exhaust. Numerical analysis is divided into two stages. At the first stage, the analysis was done on the basic scrubber without the mist eliminator, and then the second stage of analysis was done on the scrubber with the mist eliminator on several condition to check and compare with the basic scrubber. On the condition of the basic scrubber, 42.0% of the distributed water droplets were carried over to the exhaust. But by adding the designed droplet eliminator at the exhaust of the scrubber, only 3.4% of the distributed water droplets supplied to the scrubber was emitted to the atmosphere.

Experimental Study on Dynamic Behavior of a Titanium Specimen Using the Thermal-Acoustic Fatigue Apparatus (열음향 피로 시험 장치를 이용한 티타늄 시편의 동적 거동에 관한 실험적 연구)

  • Go, Eun-Su;Kim, Mun-Guk;Moon, Young-Sun;Kim, In-Gul;Park, Jae-Sang;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.127-134
    • /
    • 2020
  • High supersonic aircraft are exposed to high temperature environments by aerodynamic heating during supersonic flight. Thermal protection system structures such as double-panel structures are used on the skin of the fuselage and wings to prevent the transfer of high heat into the interior of an aircraft. The thin-walled double-panel skin can be exposed to acoustic loads by supersonic aircraft's high power engine noise and jet flow noise, which can cause sonic fatigue damage. Therefore, it is necessary to examine the behavior of supersonic aircraft skin structure under thermal-acoustic load and to predict fatigue life. In this paper, we designed and fabricated thermal-acoustic test equipment to simulate thermal-acoustic load. Thermal-acoustic testing of the titanium specimen under thermal-acoustic load was performed. The analytical model was verified by comparing the thermal-acoustic test results with the finite element analysis results.

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.