DOI QR코드

DOI QR Code

Shield Ratio and Thrust Performance Analysis According to The S-Type Nozzle of The Centerline Shape

S-형 노즐 형상의 중심선 형태에 따른 차폐율과 추력 성능 해석

  • Received : 2020.07.31
  • Accepted : 2021.06.15
  • Published : 2021.06.30

Abstract

In this study, the effect of nozzle performance according to the selection of the center line equation. Three of S-type nozzles and three of double S-type nozzles were designed using the curve equation and design parameters, and the nozzle shielding performance was evaluated using the shielding ratio definition. In order to analyze the internal flow of the nozzle, the characteristics of the velocity distribution and pressure distribution were studied, and the nozzle performance was evaluated through the total thrust ratio(f) and the nozzle insulation efficiency coefficient(η). On the other hand, the centerline with a sharply change in curvature at the entrance has a low nozzle performance and a high shielding rate. The double S-type nozzle is excellent nozzle performance and shielding rate by using a smooth centerline at the first curvature.

본 연구에서는 중심선 방정식 선정에 따른 노즐 성능 영향성을 확인하고자 하였다. 곡선 방정식과 설계 형상 파라미터를 활용하여 S-형 노즐 3조와 Double S-형 노즐 3조를 설계하였고 노즐 차폐 성능은 차폐율 정의를 이용하여 평가하였다. 그리고 내부 유동을 분석하기 위해 속도 분포도와 압력분포도로 특성을 연구하였고, 노즐 성능 계수로는 총 추력 비(f)와 노즐 단열 효율계수(η)를 통해 노즐의 성능을 평가하였다. 중심선에 따른 S-형 노즐의 성능 영향성을 분석한 결과 출구에서 급격한 곡률 변화가 있는 중심선은 노즐 성능이 우수한 반면 차폐율이 낮은 특징이 있다. 반면에 입구에서 급격한 곡률 변화가 있는 중심선은 노즐 성능이 낮아지고 차폐율이 높은 특징이 있다. Double S-형 노즐은 첫 번째 곡률에서 완만한 특징을 보이는 중심선을 사용하는 것이 노즐 성능과 차폐율이 우수하였다.

Keywords

Acknowledgement

이 논문은 국방과학연구소가 지원하는 저피탐 무인항공기 추진계통 IR 감소 기술 연구로 수행되었습니다.

References

  1. Yang, J.A., Jeon, K.S., Lee,. J.W. and Kim. S.H., "The Suggestion for Next Generation UAV Design Concept Based on Military UAV Present and Development Forecast," KSAS Conference, Jeju, Korea, pp. 1225-1228, Nov. 2014.
  2. Arcus, C., Andersson, K. and Akerlind, C., "Balancing the radar and long wavelength infrared signature properties in concept analysis of combat aircraft-a proof of concept," Aerospace Science and Technology, Vol. 71, pp. 733-741, 2017. https://doi.org/10.1016/j.ast.2017.10.022
  3. Zikidis, K., Skondras, A. and Tokas, C., "Low Observable Principles Stealth Aircraft and Anti-Stealth Technologies," Journal of Computations & Modelling, Vol. 4, No. 1, pp. 129-165, 2014.
  4. Rao, G.A. and Mahulikar, S.P., "Integrated review of Stealth Technology and its role in air power," Aeronaut Journal, Vol. 106, No. 1066, pp. 629-642, 2002.
  5. An, C.H., Kang, D.W., Baek, S.T. and Myong, R.S., "Analysis pf Plume Infrared Signatures of S-Shaped Nozzle Configurations of Aerial Vehicle," Journal of Aircraft, Vol. 53, No. 6, pp. 1768-1778, 2016. https://doi.org/10.2514/1.C033685
  6. Mahulikar, S.P., Sonaware, H.R. and Rao, G.A., "Infrared Signature Studies of Aerospace Vehicles," Progress in Aerospace Sciences, Vol. 43, No. 7-8, pp. 218-245, 2007. https://doi.org/10.1016/j.paerosci.2007.06.002
  7. D. Halliday, R. Resnick, J. Walker., Fundamentals of Physics., 11th John Wiley & Sons Inc., New York, N.Y., U.S.A., Ch 18, 2005.
  8. Yi, J.S., Kim, C.A. and Lee, B.J., "Adjoint-Based Desin Optimization of Vortex Generator in an S-Shaped Subsonic Inlet," AIAA Journal, Vol. 50, No. 11, pp. 2492-2507, 2012. https://doi.org/10.2514/1.J051687
  9. Lee, C. and Boedicker, C., "Subsonic Diffuser Design and Performance for Advanced Fighter Aircraft," Aircraft Design System and operations meeting, Colorado Springs, U.S.A, AIAA 1985-3073, Oct.1985.
  10. Sun, X.L., Wang, Z.X., Zhou, L., Shi, J.W. and Liu, Z.W., "Influences of Design Parameters on a Double Serpentine Cenvergent Nozzle," Journal of Engineering for Gas Turbines and Power, Vol. 138, No. 7, pp. 072301-072316, 2016. https://doi.org/10.1115/1.4032338
  11. Coates, T.D. and Page, G.J., "CFD Based Study of Unconventional Aeroengine Exhaust System," 30th AIAA Applied Aerodynamics Conference, New Orleans, Louisiana, U.S.A., AIAA 2012-2775, Jun. 2012.
  12. Shan, Y., Zhou, X.M., Tan, X.M., Zhang, J.Z. and Wu, Y.H., "Parametric design method and performance analysis of double S-shaped nozzles," International Journal of Aerospace Engineering, Vol. 2019, Article ID 4694837, p. 24, 2019.
  13. Liu, C.C., Ji, H.H., Li, N. and Lin, L.Z., "Numerical simulation on infrared radiant characteristics of 2D S-nozzles," Journal of Engineering Thermophysics, Vol. 31, No. 9, pp. 1567-1570, 2010. https://doi.org/10.1007/s10765-010-0794-9
  14. Liu, C.C., Ji, H.H., Huang, W. and Yang, F.F., "Numerical simulation on infrared radiation characteristics of serpentine 2-D nozzle," Journal of Aerospace Power, Vol. 28, No. 7, pp. 1482-1488, 2013.
  15. Cheng, W., Wang, Z., Zhou, L., Sun, X. and Shi, J., "Influences of shield ratio on the infrared signature of serpentine nozzle," Aerospace Science and Technology, Vol. 71, pp. 299-311, 2017. https://doi.org/10.1016/j.ast.2017.09.001
  16. Miau. J.J., Leu, T.S., Chou, J.H. and Lin, S. A., "Flow Distortion a Circular-to-Rectangular Transition Duct," AIAA Journal, Vol. 28, No. 8, pp. 1447-1456, 1990. https://doi.org/10.2514/3.25237
  17. Miller, R.S., Madnia, C.K. and Givi, P., "Numerical Simulation of Non-Circular Jets," Computers and Fluids, Vol. 24, No. 1, pp. 1-25, 1995. https://doi.org/10.1016/0045-7930(94)00019-U
  18. Lamb, M., Taylor, J.G. and Frassinelli, M.C., "Static Internal Performance of a Two- Dimensional Convergent-Divergent Nozzle with External Shelf," NASA TM-4719, Sep. 1996.
  19. Park, G.S., Kim, S.M., Choi, S.M., Myong, R.S. and Kim, W.C., "Experimental Study of a Micro Turbo Jet Engine Performance and IR Signal with Nozzle Configuration," Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 5, pp. 1-8, 2016. https://doi.org/10.6108/KSPE.2016.20.5.001
  20. Lee, H.J., Lee, J.H., Myong, R.S. Kim, S.M., Choi, S.M. and Kim, W.C., "Computational and Experimental Investigation of Thermal Flow Field of Micro Turbojet Engine with Various Nozzle Configurations," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 46, No. 2, pp. 150-158, 2018. https://doi.org/10.5139/JKSAS.2018.46.2.150
  21. Saeed, F., Aircraft propulsion, Ch. 5, John Wiley & Sons Inc., New York, N.Y., U.S.A., 2009.
  22. Liou, M.S., "A sequel to AUSM, Part II: AUSM+-up for all speeds," Journal of Computational Physics, Vol. 129, No. 2, pp. 364-382, 1996. https://doi.org/10.1006/jcph.1996.0256
  23. Sun, X.L., Wang, Z.X., Zhou, L., Shi, J.W. and Liu, Z.W., "Experimental and Computational Investigation of Double Serpentine Nozzle," Journal of Aerospace Engineering, Vol. 229, No. 11, pp. 2035-2046, 2015.