• Title/Summary/Keyword: 엔진회전수

Search Result 254, Processing Time 0.025 seconds

Study on the Expansion Technique of Compressor Characteristic Map to Sub-Idle range (저속영역으로의 압축기 특성맵 확장기법 연구)

  • Jun, Yong-Min;Lim, Byung-Jun;Rhee, Dong-Ho;Choi, Jong-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.694-699
    • /
    • 2010
  • Reliable starting capability of a gas turbine engine calls the engine industry's attention recently. So far the gas turbine engine performance researches have focused on the range between idle to Max rpm, but recent attention on the starting has brought interests in the range of "Sub-dile". As component characteristic maps are essential for the starting research, various kinds of studies have been doing and proposing ways to expand the existing maps toward sub-idle range. In this paper, previous studies were discussed and a new method suggested and validated.

  • PDF

엔진베어링의 윤활과 손상

  • 한동철
    • Tribology and Lubricants
    • /
    • v.1 no.1
    • /
    • pp.30-37
    • /
    • 1985
  • 동수압적 미끄럼베어링의 작동원리는, 두개의 서로 경사진 면이 윤활제를 그 사이에 두고 상대적인 운동을 함에 있어서 두면사이에는 윤활유 막이 형성되어 압력이 형성되고 두면에 작용하는 하중의 지지하게 되므로 직접적 마찰없이 상대적 미끄럼운동을 한다는 것이다. 동수압적 유체윤활은 윤활틈새 내의 윤활유동에 동수압적 점성유체역학 이론을 적용하며 베어링윤활유막의 압력분포를 계산하기 위한 편미분 방정식의 발견이 그 근본을 이루고 있고, 미끄럼베어링에 대한 기본적연구는 1900년 이래로 계속 수행되고 있다. 크랭크샤프트와 피스톤 연결봉 사이의 베어링은 동하중을 크게 받으며 회전하므로 저어널과 축의 상대운동은 회전운동과 윤활면의 수직운동으로 나누어 해석할 수 있다.

Analysis and Flight Test Verification of T/A-50 Engine Horsepower Extraction Capability (T/A-50 엔진 축마력(Horsepower) 능력 해석 및 비행시험 검증)

  • 이상효;이부일;정주현;이상백
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.105-111
    • /
    • 2006
  • The aircraft engine is to generate thrust for the maneuver of aircraft and to provide the power to the related hydraulic system and electrical system. Since the power provided to the systems is extracted from the high pressure compressor of aircraft engine, the extracted power is called horsepower extraction (HPX). If the HPX provided from the engine is smaller than the HPX required from the related systems, there could be abnormal engine behavior, like engine rollback or stall. Analysis on comparing the required HPX and the engine HPX capability had been performed during the T/A-50 FSD (Full Scale Development) period. The analysis results make the engine schedule changed, and T/A-50 flight test has been performed with the changed engine schedule. The analysis results and changing the engine control schedule were verified to be valid with the flight test results.

Technical Review of the Proposed Engines for SUAV (스마트무인기 후보엔진 기술검토)

  • Jun Yong-Min;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.64-71
    • /
    • 2006
  • For SUAV is required to have the capacity of VTOL and fast forward flight, the SUAV development program has decided to adopt the tiltrotor mechanism which includes helicopter and turboprop mechanisms. From the engine point of view, the key engine parameters such as engine operating mechanism, engine control scheme, the dynamics characteristic of power train, engine intake/exhaust concept, and engine installation requirements should fulfill the requirements of the two different mechanisms, helicopter and turboprop. And for the maximum efficiency of the rotor, rotational speed for the two modes are 20% different, the power train shall find a way to make it so. Meeting these specific requirements for the tiltrotor mechanism, this research begins with a conventional OTS(off-the-shelf) turboshaft engine survey and minimizes engine modification to develop an economical propulsion system. The engine technical review has been performed on the basis of those requirements and capabilities.

Convergent Study on Fatigue Life Analysis of Driving Shaft in Jet Engine (제트엔진에서의 추진축의 피로 수명해석에 관한 융합연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.6
    • /
    • pp.279-284
    • /
    • 2015
  • The vibration happened at the revolution movement of driving shaft driven with the thrust of airplane affects the great influence on the life of the shaft. And a great loss of life is caused when the fatigue damage is occurred at the driving shaft during revolution. The chattering is occurred at the driving shaft placed at the various revolution due to the aviation environment. Therefore, the part of the driving shaft concerned about the fatigue damage is grasped through the analysis study in this paper. So, the durability to prevent damage can be improved and it is possible to be grafted onto the convergence technique on the basis of a recent safe design and show the esthetic sense.

A Transient Performance Simulation of a Smart UAV Turbojet Engine (스마트 무인기용 터보제트 엔진의 천이성능 모사)

  • 공창덕;강명철;기자영;양수석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.257-260
    • /
    • 2003
  • Dynamic simulation program for a smart UAV turbojet engine was developed. The transient simulation program utilized the CMP(Constant Mass flow) method and Euler integration method for integration of excess torque. The transient performance analysis was carried out by increasing from the idle to the maximum rotational speed of the gas generator. To observe engine dynamic behavior, fuel flow was monitored through a step and a ramp increase. When the fuel was increased as a step function the overshoot of the turbine inlet temperature exceeded the limit temperature.

  • PDF

Component-Level Humidity Correction for Gas Turbine Engine Using Map Transposition Technique (특성 곡선 전치 기법을 이용한 가스 터어빈 엔진의 구성품 수준 습도 보정)

  • 이시우;정명균;임진식
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.83-94
    • /
    • 2000
  • A systematic humidity correction technique that can be used for any type of engine control mode is developed to predict the variation of engine performance due to inlet humidity. Limitation of conventional method is rot identified and then, a new method is proposed to take into account the humidity effects on each engine component characteristics and to find the variation of equilibrium running point through a re-match process between the components with a given engine control variable depending on the humidity of inlet. Comparisons are made between two methods for a single spool gas turbine engine, and it was found that the conventional method leads to invalid correction when a physical variable such as rotational speed is controlled for engine operation in humid environment. It was also found that the accuracy of the conventional method depends on the engine control mode and the engine configuration whereas the proposed method can be used for any type of engine control mode and engine configuration.

  • PDF

Effects of exhaust pipe curvature on the performance of a 4 cycle diesel engine (디이젤 엔진에서 排氣管 屈曲이 엔진性能에 미치는 影響)

  • 문병수;서정윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.735-741
    • /
    • 1986
  • An experimental study on the effects of exhaust pipe curvature on the performance of a diesel engine is presented. The experiments were carried out on a 4-cycle, 216 c.c diesel engine and two types of pipe curvature, circular arc and rectangle, were tested. The shaft output, shaft torque and specific fuel consumption were obtained by inserting bent pipes of different dimensions into the exhaust pipe at various engine operation conditions. It was found that the engine performance was decreased by the circular arc bent pipe and the effects were dominated by its arc angle. The decrease of engine performance was minimized by the arc angle of 180.deg.. By the rectangle pipes the performance was more decreased and the effects were little influenced by its dimensions.

Fault Detection of Small Turbojet Engine for UAV Using Unscented Kalman Filter and Sequential Probability Ratio Test (무향칼만필터와 연속확률비 평가를 이용한 무인기용 소형제트엔진의 결함탐지)

  • Han, Dong Ju
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.22-29
    • /
    • 2017
  • A study is performed for the effective detection method of a fault which is occurred during operation in a small turbojet engine with non-linear characteristics used by unmanned air vehicle. For this study the non-linear dynamic model of the engine is derived from transient thermodynamic cycle analysis. Also for inducing real operation conditions the controller is developed associated with unscented Kalman filter to estimate noises. Sequential probability ratio test is introduced as a real time method to detect a fault which is manipulated for simulation as a malfunction of rotational speed sensor contaminated by large amount of noise. The method applied to the fault detection during operation verifies its effectiveness and high feasibility by showing good and definite decision performances of the fault.

A Dynamic Simulation and LQR Control for Performance Improvement of Small Turbojet Engine (소형 터보제트엔진의 동적모사와 성능향상을 위한 LQR 제어)

  • 공창덕;기자영;김석균
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.55-60
    • /
    • 1997
  • A nonlinear dynamic simulation was performed by using DYNGEN program with various environmental conditions. It was observed that the effect of the bleed air flow rate changed to overall engine performance. The real time linear model which was a function of rpm was resulted to be close to nonlinear simulation results. For optimal LQR controller, it was considered only fuel flow rate or both fuel flow rate and bleed air rate as inputs. In the comparison of both results, the LQR controller with multi input had better performance than that with single input.

  • PDF