• Title/Summary/Keyword: 엔진난류

Search Result 118, Processing Time 0.023 seconds

Numerical study on the transient of supersonic diffuser (초음속 디퓨져 천이현상에 대한 수치적 연구)

  • Kim, Jong-Rok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.349-352
    • /
    • 2010
  • A study is analyzed on the transient flow of supersonic diffuser and performed on the of supersonic diffuser with Computational Fluid Dynamic. The flow field of supersonic diffuser is calculated using Axisymmetric two-dimensional Navier-Stokes equation with $k-{\epsilon}$ turbulence model. The transient simulation is compared in terms of mach number and temperature of vacuum chamber according to the chamber pressure of starting transient on Liquid rocket engine.

  • PDF

An Experimental Study on the Behavior of Injection Gas (분사가스의 확산거동에 관한 실험적 연구 성방정식의 형성(II))

  • 박경석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1215-1222
    • /
    • 1989
  • 본 논문의 목적은 공기 유동장내에 가스분류의 거동을 조사하고 실용 가스 기관의 설계시에 필요한 기초적 데이타를 제공하고자 하는데 있다.본 연구와 관련 된 후래의 연구를 보면 자문등은 열선농도프로브를 사용하여 정상분류중의 농도측정을 행하였고, 분류내의 내부구조를 상세히 조사하였다. 특히, 종래에는 일정하게 보였 던 분류코아 부의 농도변동값의 경향을 구체적으로 나타내었다.

램제트 엔진 흡입구 유동 및 연소유동 해석

  • 김성돈;정인석;윤영빈;최정열
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.18-18
    • /
    • 1999
  • IRR형태의 액체 램제트 추진기관의 공기 흡입구 유동과 내부 연소 유동을 파악하기 위한 수치적 해석을 수행하였다. 해석은 다원 혼합기체에 대한 압축성 Navier-Stoke 방정식과 공기/Kerosene에 대한 화학 반응을 고려하였으며, 결합된 형태의 k-$\omega$/k-$\varepsilon$ 2 방정식 난류모델을 이용하였다. 기본 유동 해법으로는 고차의 시간 및 공간 정확도를 가지는 근사 Riemann 해법과 LU-SGS 방법을 이용하였다.

  • PDF

기미부 형상과 엔진화염에 의한 유도탄의 항력 영향 수치해석

  • 정석영;안창수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.23-27
    • /
    • 2002
  • 천음속으로 비행하는 공기흡입유도탄의 경우, 비행거리 및 요구기동을 충족시키기 위해서는 추진제트에 의해 변화하는 기체 기미부의 압력항력을 정확히 예측하고 이 항력을 감소시키기 위한 기미부 형상설계는 매우 중요하며 필수적이다. 제트 Plume에 의한 기체 기미부 및 base의 압력분포에 따른 항력해석을 난류모델링을 고려한 수치해석 결과를 제시한다. Jet plume의 크기 및 배기가스 조건에 따른 항력변화, 및 기미부 형상에 따른 항력변화 그리고 천음속 마하수에 따른 결과 등을 제시한다.

  • PDF

Atomization Characteristics of Small LRE-Injector Spray According to Injection Pressure Variation (소형 액체로켓엔진 인젝터 분무의 분사압력 변이에 따른 미립화 특성)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.125-128
    • /
    • 2008
  • Atomization characteristics of small LRE-injector spray are investigated by using dual-mode phase Doppler anemometry (DPDA). Velocity, size, number density, and volume flux were measured at various injection pressures along the radial distance to make a close inquiry into spatial distribution characteristic of spray droplets. As the injection pressure increases, the velocity, turbulence intensity, number density, and volume flux of spray droplets become higher, whereas the droplet size ($D_{10}$ or $D_{32}$) gets smaller. Also, velocity and volume flux are proportional to Sauter mean diameter (SMD, $D_{32}$).

  • PDF

Development of Gas Turbine Engine Simulation Program Based on CFD (CFD 기반 가스터빈 엔진 모사 코드 개발)

  • Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Ahn, Iee-Ki;Yang, Soo-Seok;Kim, Jae-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.42-53
    • /
    • 2009
  • Gas turbine engine simulation program has been developed. In compressor and turbine, 2-D NS implicit code is used with k-$\omega$ SST turbulent model. In combustor, 0-D lumped method chemical equilibrium code is adopted under the limitations, the products are only 10 species of molecular and air-fuel is perfectly mixed state with 100% combustion efficiency at constant pressure. Fluid properties are shared on interfaces between engine components. The outlet conditions of compressor have been used as the inlet condition of combustor. The inlet condition of turbine comes from the compressor The back pressure in compressor outlet is transferred by the inlet pressure of turbine. Unsteady phenomena at rotor-stator in compressor and turbine is covered by mixing-plane method. The state of engine can be determined only by given inlet condition of compressor, outlet condition of turbine, equivalence ratio and rotating speed.

Mixing Characteristics in Supersonic Combustor with a Cavity (Cavity를 이용한 초음속 연소기 내의 혼합특성)

  • Oh Juyoung;Bae Young-Woo;Kim Ki-Su;Jeon Young-Jin;Lee Jae-Woo;Byun Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.359-363
    • /
    • 2005
  • In SCRamjet engine, combustion occurs in supersonic flow with airbreathing. SCRamjet is characterized by very short combustion time in combustor, so it is very important to be mixing the air and fuel in short duration. Several methods are suggested for mixing enhancement. Among these, cavity is selected to study for enhancement of mixing. The numerical simulation is performed in the case of freestream Mach number of 2.5 and cavity located in front of fuel jet injection. CFD-Fastran, commercial code with three-dimensional Navier-Stokes equation with the Menter SST turbulence model were used. The results are obtained validate experiment results for same condition. Therefore, the numerical results show the mixing enhancement characteristics with a cavity.

  • PDF

A Unified 3D Numerical Analysis of a Model Scramjet Engine with a Cavity Flame-Holder and Two Intake Side Walls (공동형 보염기를 갖는 모델 스크램제트 엔진의 흡입구 측면효과를 고려한 3차원 통합 유동해석)

  • Yeom, Hyo-Won;Kim, Sung-Jin;Sung, Hong-Gye;Kang, Sang-Hoon;Yang, Soo-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.590-593
    • /
    • 2009
  • To identify the detailed 3D flow characteristics of a model scramjet engine, a unified 3D numerical analysis was performed. The numerical domain of concern includes the entire flow path of the model scramjet engine extending from the intake to the nozzle exhaust. Turbulent models($k-{\omega}$ SST and low Reynolds number k-e with Sarkar model) were applied with comparison of experiment result. Intake side wall's effect on flow characteristics was analyzed in view points of flow quality at inlet duct and near the flame holder as well. The code is paralleled with multi-block feature using MPI(Massage Passing Interface) library to speed up the 3D calculation.

  • PDF

A Numerical Simulation of Unsteady Axisymmetric Turbulent Flow in a Reciprocating Engine Including Port/Valve Assembly (축대칭 왕복엔진의 비정상 난류유동에 대한 수치해석)

  • 조진행;유홍선;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.139-149
    • /
    • 1994
  • A numerical simulation of unsteady axisymmetric turbulent flow was performed for a reciprocating engine including port/valve assembly. The governing equations based on a nonorthogonal coordinate formulation with Cartesian velocity components were used and discretised by the finite volume method with non-staggered variable arrangements. The modified $\kappa-\xi$. turbulence model which included the effect of compressibility was used. The results of twodimensional transient calculation for the axisymmetric configuration were compared with the experimental data. Although slightly low rms velocity was predicted compared to the experimental data, predicted velocity distributions at the valve exit and in-cylinder region showed good agreements with the experimental data. The flow at the valve exit was separated at the same valve lift position with the experimental data. Two vortices incylinder region were generated during the initial intake process. The clockwise main vortex became strong and moved upward to the top wall. The counter-clockwise second vortex became weak and stick to the upper left corner of the cylinder. After middle intake process, new vortex adjacent to upper cylinder wall appeared by the piston motion and therefore, the in-cylinder flow was formed into three vortices. The cylinder pressure just before bottom dead center of piston was higher than inlet pressure and then the reverse flow occured at the valve exit. The in-cylinder flow characteristics were strongly dependent on piston motion, but insensitive to valve motion.

Development and Validation of Spray Model of Coaxial Swirl Injector Installed in Liquid Propellant Rocket Engine (액체로켓엔진에 장착되는 스월 분사기의 분무 모델 개발 및 검증)

  • Moon, Yoon-Wan;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.37-50
    • /
    • 2007
  • This study investigated the characteristics of spray generated by a liquid coaxial swirl injector used in a combustor of the liquid rocket engine. The linear stability analysis considered long and short wave was introduced in liquid sheet breakup. Through the hydrodynamic analysis the initial liquid sheet thickness spray angle and injection velocity were predicted. To evaluate the effect of turbulence model standard $k-{\varepsilon}$ and RNC $k-{\varepsilon}$ model were applied to numerical calculation and it was known that RNC $k-{\varepsilon}$ model was more applicable to predict spray characteristics. On the basis of this evaluation validation of the developed model was performed with swirl injector installed in LPRE and the predicted results of breakup length, spray angle, and SMD agreed well with experiments qualitatively and quantitatively.