• Title/Summary/Keyword: 에칭폐액

Search Result 21, Processing Time 0.025 seconds

Recovery of Nickel Metal from the Spent FeCl$_3$ Etching Solution by Solvent Extraction and Chemical Reduction (FeCl$_3$ 에칭廢液으로부터 溶媒抽出과 化學沈澱에 의한 니켈金屬 回收)

  • Lee, Man-Seung;Kim, Myoung-Sik
    • Resources Recycling
    • /
    • v.14 no.3
    • /
    • pp.48-54
    • /
    • 2005
  • Solvent extraction and chemical reduction experiments have been performed to separate iron and nickel from a spent FeCl$_3$ etching solution and to recover nickel metal. It was possible to separate iron and nickel by extracting the spent solution with Alamine336. At the O/A ratio of 7:1, iron extraction percentage of 99% was obtained. In the stripping of the loaded organic with 0.01 M HCl solution, iron stripping percentage of 99% was obtained when the A/O ratio was 7:1. When the pH of the raffinate was controlled to be 10.5, nickel metal powder with 99% purity was obtained by using hydrazine as a reducing agent at 100$^{\circ}C$. A process was suggested to recover nickel metal from the spent FeCl$_3$ solution and to regenerate etching solution.

Design of Pretreatment Process of Lead Frame Etching Wastes Using Reduction-Oxidation Method (환원-산화법을 이용한 리드프레임 에칭폐액의 정제과정 설계)

  • Lee, Seung Bum;Jeon, Gil Song;Jung, Rae Yoon;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • When copper alloy is used in etching process for the production of lead frame, the high concentration of heavy metals, such as iron, nickel and zinc may be included in the etching waste. Those etching waste is classified as a specified one. Therefore a customized design was designed for the purification process of the lead frame etching waste liquid containing high concentrations of heavy metals for the production of an electroplating copper(II) oxide. Since the lead frame etching waste solution contains highly concentrated heavy metal species, an ion exchange method is difficult to remove all heavy metals. In this study, a copper(I) chloride was manufactured by using water solubility difference related to the reduction-oxidation method followed by the reunion of copper(II) chloride using sodium sulfate as an oxidant. The hydrazine was chosen as a reducing agent. The optimum added amount was 1.4 mol per 1.0 mol of copper. In the case of removal of heavy metals by using the combination of reduction-oxidation and ion exchange resin methods, 4.3 ppm of $Fe^{3+}$, 2.4 ppm of $Ni^{2+}$ and 0.78 ppm of $Zn^{2+}$ can be reused as raw materials for electroplating copper(II) oxide when repeated three times.

A Study on the Recovery of Nitric Acid from Spent Nitric Etching Solutions by Solvent Extraction (질산 Etching 폐액으로부터 용매추출법에 의한 질산의 회수에 관한 연구)

  • 안재우
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.46-51
    • /
    • 1998
  • A study has been on the recovery of nitric acid and valuable metals such as Fe, Cu, Sn, Pb, from spent nitric etching solutions. The effects of extractant of extractant type, concentrations, phase raios and selectivity from Fe, Cu, Sn, Pb on nitric acid extraction were studied. The results showed that TBP as an extractant for recovering of nitric acid was more effective than Alamine336, and the optimal concentration of TBP was found to be 60~70% of organic phase. Also, the nitric acid were only extracted by TBP from the spent etching solutions and the heavy metals such as Fe, Cu, Sn, Pb were not extracted above 0.1N nitric acid in spent etching solutions, From the analysis of McCabe-Thiele diagram, the extraction of 95% nitric acid is attained at a ratio of O/A=3 with five stages by 60% TBP and the stripping of 98% nitric acid from 80 g/l nitric acid in organic phase is attained at a ratio of O/A=1 with four stages by distilled water.

  • PDF

Solvent Extraction for the Recovery of Copper from Hydrochloric Etching Solutions by Alamine336 (염산에칭폐액으로부터 Alamine336에 의한 구리의 용매추출에 관한 연구)

  • 안재우;염재웅
    • Resources Recycling
    • /
    • v.6 no.3
    • /
    • pp.9-14
    • /
    • 1997
  • A study has been made of the rccovery of copper (11) by solvent extraction with Alamine336 (Tri-n-oclylamine) as a extractant from hydrochloric etching solutions. The effect of extractant concentrations, hydrochloric acid, chloride Ion concentrations and phase ratio (organiclaqueaus) on copper extraction were studied. Experimental results showed that the concenl~atiano f extractant and the phase ratio strongly influenced the copper extraction, and the extraction percent of capper Increased at higher hydrochloric acid and chloride ion mncmhation. We proposed that the optimum extrachon stages of copper for continuous extraction process by analysidng thc McCabe-Thielc diagram. Stripping of copper from the loaded organic phases wn be accomplished by pure water (H, O) as a dripping reagent effectively. As the tcmpcrature is increased, thc stripping of copper is enhanced.

  • PDF

Recovery of Nickel from Waste Iron-Nickel Alloy Etchant and Fabrication of Nickel Powder (에칭 폐액으로부터 용매추출과 가수분해를 이용한 니켈분말제조에 관한 연구)

  • Lee, Seokhwan;Chae, Byungman;Lee, Sangwoo;Lee, Seunghwan
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2019
  • In general after the etching process, waste etching solution contains metals. (ex. Nickel (Ni), Chromium (Cr), Zinc (Zn), etc.) In this work, we proposed a recycling process for waste etching solution and refining from waste liquid contained nickel to make nickel metal nano powder. At first, the neutralization agent was experimentally selected through the hydrolysis of impurities such as iron by adjusting the pH. We selected sodium hydroxide solution as a neutralizing agent, and removed impurities such as iron by pH = 4. And then, metal ions (ex. Manganese (Mn) and Zinc (Zn), etc.) remain as impurities were refined by D2EHPA (Di-(2-ethylhexyl) phosphoric acid). The nickel powders were synthesized by liquid phase reduction method with hydrazine ($N_2H_4$) and sodium hydroxide (NaOH). The resulting nickel chloride solution and nickel metal powder has high purity ( > 99%). The purity of nickel chloride solution and nickel nano powders were measured by EDTA (ethylenediaminetetraacetic) titration method with ICP-OES (inductively coupled plasma optical emission spectrometer). FE-SEM (field emission scanning electron microscopy) was used to investigate the morphology, particle size and crystal structure of the nickel metal nano powder. The structural properties of the nickel nano powder were characterized by XRD (X-ray diffraction) and TEM (transmission electron microscopy).

A Study on the Recovery of Shape-controlled Copper Oxide from the Waste etchant of PCB Industry (PCB 産業에서 배출되는 산성 염화동 폐액으로부터 입자형상이 제어된 산화동 회수에 관한 연구)

  • 김영희;류도형;김수룡;어용선
    • Resources Recycling
    • /
    • v.10 no.6
    • /
    • pp.15-21
    • /
    • 2001
  • Shape-controlled copper oxides have been recovered from copper-containing waste etchant by neutralization with alkalihydroxide. Large amount of copper-containing waste etchant is generated from Printed Circuit Board industry. In an environmental and economic point of view, retrieve of the valuable natural resource from the waste is important. In recycling process of copper oxide from the waste etchant, reaction temperature controls shapes and sizes of the products. Copper oxide recovered below reaction temperature $40^{\circ}C$ was of a needle shape, while copper oxide comes in a platy shape above $40 ^{\circ}C$ . Physical properties of samples have been characterized using SEM, XRD, TGA and Atomic absorption spectroscopy.

  • PDF

Preparation and Characterization of Copper Oxychloride from Acidic Copper Chloride Etchant (PCB 산업에서 배출되는 산성 염화동 폐액으로부터 Copper Oxychloride의 제조 및 특성분석)

  • 김영희;김수룡;정상진;이윤주;어영선
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.3-10
    • /
    • 2003
  • Copper oxychloride used as an agricultural fungicide has been recovered from copper-containing waste etchant by the neutralization with alkali hydroxides. Large amount of copper-containing waste etchant is generated from Printed Circuit Board industry. In an environmental and economic point of view, retrieve of the valuable natural resource from the waste is important. Recycling process of copper oxychloride from the waste etchant is discovered through the our study. In the range of reaction temp. 2$0^{\circ}C$-4$0^{\circ}C$, pH 5-7, pure copper oxychloride was able to prepare and the yield of copper oxychloride was higher than 95%. Physical properties of the sample have been characterized using SEM, XRD, TGA, ICP and Atomic absorption spectroscopy.

Synthesis of LiDAR-reflective Hollow-structured Black Materials and Recycling of Their Etched Waste for Semiconductor Epoxy Molding Compound (라이다 반사형 중공구조 검은색 물질의 개발 및 코어 에칭 폐액 재활용을 통한 반도체용 에폭시 몰딩 컴파운드 응용)

  • Ha-Yeong Kim;Min Jeong Kim;Jiwon Kim;Suk Jekal;Seon-Young Park;Jong Moon Jung;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.5-14
    • /
    • 2023
  • In this study, LiDAR-reflective black hollow-structured silica/titania(B-HST) materials are successfully synthesized by employing the NaBH4 reduction and etching method on silica/titania core/shell(STCS) materials, which also effectively enhance near-infrared(NIR) reflectance. Moreover, core-etched supernatant solutions are collected and recycled for the synthesis of extracted silica(e-SiO2) process, which successfully applies as filler materials for semiconductor epoxy molding compound(EMC). In detail, B-HST materials, fabricated by the sequential experimental steps of sol-gel, reduction, and sonication-mediated etching method, manifest blackness(L*) of 13.2 similar to black paint and excellent NIR reflectance(31.1%). Consequently, B-HST materials are successfully prepared as LiDAR-reflective black materials. Additionally, core-etched supernatant solution with silanol precursors are employed for synthesis of homogeneous silica filler materials via sol-gel method. As-synthesized silica fillers are incorporated with epoxy resin and carbon black for the preparation of semiconductor EMC. Experimentally synthesized EMC exhibits comparable mechanical-chemical properties to commercial EMC. Conclusively, this study successfully proposes designing procedure and practical experimental method for simultaneously synthesizing the NIR-reflective black materials for self-driving vehicles and EMC materials for semiconductors, which are materials suitable for the industrial 4.0 era, and presented their applicability in future industries.

The Optimization of Solvent Extraction Process of Iron Chloride Etching Waste Solution (염화철 에칭폐액의 용매추출공정 최적화에 관한 연구)

  • Park, Il-Jeong;Kim, Dae-Weon;Kim, Geon-Hong;Chae, Hong-jun;Lee, Sang-Woo;Jung, Hang-Chul
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.279-285
    • /
    • 2017
  • In this study, a new organophosphorus acid-based solvent (KMC-P) from KMC Co., Ltd. was used for the recovery of the iron chloride etching waste solution. In order to increase the extraction efficiency for the new solvent in the solvent extraction process, we selected the process variables and conducted the optimization experiment according to the DOE to investigate the correlation between the variables. Solvent concentration, pH, and O/A ratio were found to be factors affecting extraction and stripping efficiency. The optimum stripping efficiency was 69.7% when the solvent concentration was 29.4 wt%, the HCl addition amount was 0 mL, and the O/A ratio was 7, and the reliability was more than 86%.

Recovery of Pure Alumina Powder from the Wasted Aluminum Etching Solution by Precipitation Method (알루미늄 에칭폐액으로부터 침전법에 의한 순수 알루미나분말의 회수)

  • 김기호;강병철
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.3
    • /
    • pp.150-157
    • /
    • 1992
  • A recovery process of pure alumina powder from the wasted aluminum etching solution of electrolytic condenser works was studied. The possibility of this process was considered in the basis of thermodynamic data nad physico-chemical properties for the recovered materials were tested. In order to obtain pure alumina, Fe3+ and Cu2+ in the solution as impurities were solvent-extracted, respectively, and then, Al3+ was precipitated by changing the pH of the solution. As the results, more than 99.9% of Al3+ in the solution was recovered by the precipitation method. The weight of the precipitate was reduced to about 65 wt.% of the original one by calcination and the sizes of the recovered powders were in order of 3-5$\mu\textrm{m}$. The precipitates were transformed to $\alpha$-Al2O3 at the calcination temperature about 120$0^{\circ}C$.

  • PDF