• Title/Summary/Keyword: 에지 클라우드

Search Result 29, Processing Time 0.026 seconds

A method to speed up container deployments on edge clouds (에지 클라우드에서 컨테이너 배포 속도 개선 방법)

  • Seungmin Lee;Heejun Roh;Wonjun Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.114-115
    • /
    • 2024
  • 컨테이너 오케스트레이션은 에지 클라우드에 컨테이너를 효율적으로 배포, 관리할 수 있게 해 주는 자동화 기술이다. 지리적으로 떨어져 있을 수 있는 에지 노드의 집합인 에지 클라우드의 규모와 복잡성이 커지면서 에지 클라우드에서 컨테이너의 고속 프로비저닝이 중요해졌다. 이때, 에지 클라우드에서 컨테이너의 배포 속도가 중요한 변수로 작용한다. 본고에서는 배포 속도를 개선하기 위해 이미지 내의 파일을 에지 노드 간에 공유하는 Peer-to-Peer 아키텍처에 기반을 둔 컨테이너 가속화 방법을 제시하고 단순화한 유량 모델을 통해 그 성능을 분석한다.

Deep Learning-Based Dynamic Scheduling with Multi-Agents Supporting Scalability in Edge Computing Environments (멀티 에이전트 에지 컴퓨팅 환경에서 확장성을 지원하는 딥러닝 기반 동적 스케줄링)

  • JongBeom Lim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.399-406
    • /
    • 2023
  • Cloud computing has been evolved to support edge computing architecture that combines fog management layer with edge servers. The main reason why it is received much attention is low communication latency for real-time IoT applications. At the same time, various cloud task scheduling techniques based on artificial intelligence have been proposed. Artificial intelligence-based cloud task scheduling techniques show better performance in comparison to existing methods, but it has relatively high scheduling time. In this paper, we propose a deep learning-based dynamic scheduling with multi-agents supporting scalability in edge computing environments. The proposed method shows low scheduling time than previous artificial intelligence-based scheduling techniques. To show the effectiveness of the proposed method, we compare the performance between previous and proposed methods in a scalable experimental environment. The results show that our method supports real-time IoT applications with low scheduling time, and shows better performance in terms of the number of completed cloud tasks in a scalable experimental environment.

Low-Power Streamable AI Software Runtime Execution based on Collaborative Edge-Cloud Image Processing in Metaverse Applications (에지 클라우드 협동 이미지 처리기반 메타버스에서 스트리밍 가능한 저전력 AI 소프트웨어의 런타임 실행)

  • Kang, Myeongjin;Kim, Ho;Park, Jungwon;Yang, Seongbeom;Yun, Junseo;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1577-1585
    • /
    • 2022
  • As the interest in the 4th industrial revolution and metaverse increases, metaverse with multi edge structure is proposed and noted. Metaverse is a structure that can create digital doctor-like system through a large amount of image processing and data transmission in a multi edge system. Since metaverse application requires calculating performance, which can reconstruct 3-D space, edge hardware's insufficient calculating performance has been a problem. To provide streamable AI software in runtime, image processing, and data transmission, which is edge's loads, needs to be lightweight. Also lightweight at the edge leads to power consumption reduction of the entire metaverse application system. In this paper, we propose collaborative edge-cloud image processing with remote image processing method and Region of Interest (ROI) to overcome edge's power performance and build streamable and runtime executable AI software. The proposed structure was implemented using a PC and an embedded board, and the reduction of time, power, and network communications were verified.

Key-Agreement Protocol between IoT and Edge Devices for Edge Computing Environments (에지 컴퓨팅 환경을 위한 IoT와 에지 장치 간 키 동의 프로토콜)

  • Choi, Jeong-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.23-29
    • /
    • 2022
  • Recently, due to the increase in the use of Internet of Things (IoT) devices, the amount of data transmitted and processed to cloud computing servers has increased rapidly. As a result, network problems (delay, server overload and security threats) are emerging. In particular, edge computing with lower computational capabilities than cloud computing requires a lightweight authentication algorithm that can easily authenticate numerous IoT devices.In this paper, we proposed a key-agreement protocol of a lightweight algorithm that guarantees anonymity and forward and backward secrecy between IoT and edge devices. and the proposed algorithm is stable in MITM and replay attacks for edge device and IoT. As a result of comparing and analyzing the proposed key-agreement protocol with previous studies, it was shown that a lightweight protocol that can be efficiently used in IoT and edge devices.

IoT Collaboration System Based on Edge Computing for Smart Livestock System (스마트 축사를 위한 에지 컴퓨팅 기반 IoT 협업 시스템)

  • Ahn, Chi-Hyun;Lee, Hyungtak;Chung, Kwangsue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.258-264
    • /
    • 2022
  • The smart farm for livestock, in which information and communication technology (ICT) is combined with livestock farm, is mostly based on the cloud computing paradigm. A cloud-based smart livestock farm has disadvantages such as increased response time, burden on cloud resource caused by the increased number of IoT sensors, traffic burden on the network, and lack of failure resilience mechanisms through collaboration with adjacent IoT devices. In this paper, with these problems in mind, we propose an IoT collaboration system based on edge computing. By using the relatively limited computing resources of the edge device to share the cloud's web server function, we aim to reduce the cloud's resources needed and improve response time to user requests. In addition, through the heartbeat-based failure recovery mechanism, IoT device failures were detected and appropriate measures were taken.

Design and Evaluation of an Edge-Fog Cloud-based Hierarchical Data Delivery Scheme for IoT Applications (사물인터넷 응용을 위한 에지-포그 클라우드 기반 계층적 데이터 전달 방법의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.37-47
    • /
    • 2018
  • The number of capabilities of Internet of Things (IoT) devices will exponentially grow over the next years. These devices may generate a vast amount of time-constrained data. In the context of IoT, data management should act as a layer between the objects and devices generating the data and the applications accessing the data for analysis purposes and services. In addition, most of IoT services will be content-centric rather than host centric to increase the data availability and the efficiency of data delivery. IoT will enable all the communication devices to be interconnected and make the data generated by or associated with devices or objects globally accessible. Also, fog computing keeps data and computation close to end users at the edge of network, and thus provides a new breed of applications and services to end users with low latency, high bandwidth, and geographically distributed. In this paper, we propose Edge-Fog cloud-based Hierarchical Data Delivery ($EFcHD^2$) method that effectively and reliably delivers IoT data to associated with IoT applications with ensuring time sensitivity. The proposed $EFcHD^2$ method stands on basis of fully decentralized hybrid of Edge and Fog compute cloud model, Edge-Fog cloud, and uses information-centric networking and bloom filters. In addition, it stores the replica of IoT data or the pre-processed feature data by edge node in the appropriate locations of Edge-Fog cloud considering the characteristic of IoT data: locality, size, time sensitivity and popularity. Then, the performance of $EFcHD^2$ method is evaluated through an analytical model, and is compared to fog server-based and Content-Centric Networking (CCN)-based data delivery methods.

Technology Standard Trends in Distributed and Edge Cloud Computing (분산 및 에지 클라우드 기술 표준 동향)

  • M.K. In;K.C. Lee;S.Y. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.3
    • /
    • pp.69-78
    • /
    • 2024
  • Cloud computing technology based on centralized high-performance computing has brought about major changes across the information technology industry and led to new paradigms. However, with the rapid development of the industry and increasing need for mass generation and real-time processing of data across various fields, centralized cloud computing is lagging behind the demand. This is particularly critical in emerging technologies such as autonomous driving, the metaverse, and augmented/virtual reality that require the provision of services with ultralow latency for real-time performance. To address existing limitations, distributed and edge cloud computing technologies have recently gained attention. These technologies allow for data to be processed and analyzed closer to their point of generation, substantially reducing the response times and optimizing the network bandwidth usage. We describe distributed and edge cloud computing technologies and explore the latest trends in their standardization.

Rendering Quality Improvement Method based on Inverse Warping and Depth (역 변환과 뎁스 기반의 포인트 클라우드 렌더링 품질 향상 방법)

  • Lee, Heejea;Yun, Junyoung;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.85-88
    • /
    • 2021
  • 포인트 클라우드 콘텐츠는 실제 환경 및 물체를 3 차원 위치정보를 갖는 점들과 그에 대응하는 색상 등을 획득하여 기록한 실감 콘텐츠이다. 위치와 색상 정보로만 이뤄진 3 차원 점으로 이뤄진 포인트 클라우드 콘텐츠는 확대하여 렌더링 할 경우 점과 점 사이의 간격이 벌어지면서 발생하는 구멍에 의해 콘텐츠 품질이 저하될 수 있다. 이러한 문제를 해결하기 위해 본 논문에서는 포인트 클라우드 확대 시 점들 간 간격이 벌어져 생기는 구멍에 대해 깊이정보를 활용한 역변환 기반 보간 방법을 통해 포인트 클라우드 콘텐츠 품질을 개선하는 방법을 제안한다. 벌어진 간격들 사이에서 빈 공간을 찾을 때 그 사이로 뒷면의 점들이 그려지게 되어 보간 방법을 적용하는데 방해요소로 작용한다. 이를 해결하기 위해 구멍이 발생하지 않은 시점에서 렌더링 된 영상을 사용하여 포인트 클라우드의 뒷면에 해당되는 점들을 제거한다. 다음으로 깊이 맵(depth map)을 추출한 후 추출된 깊이 값을 사용하여 뎁스 에지(depth edge)를 구하고 에지를 사용하여 깊이 불연속 부분에 대해 처리한다. 마지막으로 뎁스 값을 활용하여 이전에 찾은 구멍들의 역변환을 하여 원본의 데이터에서 픽셀을 추출한다. 제안하는 방법으로 콘텐츠를 렌더링 한 결과, 기존의 크기를 늘려 빈 영역을 채우는 방법에 비해 렌더링 품질이 평균 PSNR 측면에서 2.9 dB 향상된 결과를 보였다.

  • PDF

A Resource Management Scheme Based on Live Migrations for Mobility Support in Edge-Based Fog Computing Environments (에지 기반 포그 컴퓨팅 환경에서 이동성 지원을 위한 라이브 마이그레이션 기반 자원 관리 기법)

  • Lim, JongBeom
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.4
    • /
    • pp.163-168
    • /
    • 2022
  • As cloud computing and the Internet of things are getting popular, the number of devices in the Internet of things computing environments is increasing. In addition, there exist various Internet-based applications, such as home automation and healthcare. In turn, existing studies explored the quality of service, such as downtime and reliability of tasks for Internet of things applications. To enhance the quality of service of Internet of things applications, cloud-fog computing (combining cloud computing and edge computing) can be used for offloading burdens from the central cloud server to edge servers. However, when devices inherit the mobility property, continuity and the quality of service of Internet of things applications can be reduced. In this paper, we propose a resource management scheme based on live migrations for mobility support in edge-based fog computing environments. The proposed resource management algorithm is based on the mobility direction and pace to predict the expected position, and migrates tasks to the target edge server. The performance results show that our proposed resource management algorithm improves the reliability of tasks and reduces downtime of services.

Design of Portable Intelligent Surveillance System based on Edge Cloud and Micro Cloud (에지 클라우드 및 마이크로 클라우드 기반의 이동형 지능 영상감시 시스템 설계)

  • Park, Sun;Cha, ByungRae;Kim, JongWon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.556-557
    • /
    • 2019
  • The current video surveillance system is the third generation, and the video device has developed from low image quality to high image quality. The video surveillance solution has improved from the simple type to the intelligent type. However, as the equipment and technology for these video surveillance systems become more complicated and diversified, they are increasingly dependent on infrastructure, such as faster network speed and stable power supply. On the other hand, there is a growing need for video surveillance in areas where basic infrastructure is limited, such as power and communications. In this paper, we propose a system that can support intelligent video surveillance in a region where basic infrastructure is limited.

  • PDF