• Title/Summary/Keyword: 에버그린

Search Result 5, Processing Time 0.016 seconds

Design and Implementation of Reliable Distributed Programming Environment based on HORB (HORB에 기반한 신뢰성 있는 분산 프로그래밍 환경의 설계 및 구현)

  • Hyun, Mu-Yong;Kim, Shik;Kim, Myung-Jun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.2
    • /
    • pp.1-9
    • /
    • 2002
  • The use of Object-Oriented Distributed Programming(OODP) environment such as DCOM, DSOM, Java RMI, CORBA to implement distributed applications is becoming increasingly popular. However, absence of a fault-tolerance feature in these middleware platforms complicates the design and implementation of reliable distributed object-based applications, although they greatly enhance the quality and reusability of the distributed object-based applications. In this paper, we propose a fault-tolerant programming environment based on RMI, namely Evergreen, for the reliable distributed computing with checkpoints and rollback-recovery mechanism. Based on a series of experiments, we evaluate the performance of Evergreen and find its possibility of extension to fully support our optimal design goal.

국내시장정보

  • Korea Far Infrared Association
    • Journal of Korea Far Infrared Association
    • /
    • s.19
    • /
    • pp.44-52
    • /
    • 2003
  • PDF

Design and Implementation of Network Fault-Tolerant Application Software Streaming (네트워크 고장감내 소프트웨어 스트리밍 기술의 설계 및 구현)

  • Shim, Jeong-Min;Kim, Won-Young;Choi, Wan
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.126-133
    • /
    • 2006
  • Application software streaming is a virtualization technology that enables users to use applications without installation on her/his computer. With application streaming service, a client immediately starts and uses the application as if it were installed. The application can be executed while executable codes for the application may still be streamed. Since the software streaming is based on networks, its service is affected by network failures. Network failures may cause the streamed application to stop, and to make it worse, also the system may crash because executable codes for the application can't be streamed from the streaming server. Using the Pareto principle (80 vs. 20 rule), users can be served continuously with the minimum functions that are frequently used, pre-fetched and cached if we provide a more intelligent and fault-tolerant streaming technique. This paper proposes the concept and technique named Evergreen. Using the Evergreen technique, users can continue using the streamed application while a network failure occurs, although user can access only the streamed code. We also discuss the implementation of Evergreen technique in details.

  • PDF

Improving Biomass Productivity of Freshwater microalga, Parachlorella sp. by Controlling Gas Supply Rate and Light Intensity in a Bubble Column Photobioreactor (가스공급속도 및 광도조절을 이용한 담수미세조류 Parachlorella sp.의 바이오매스 생산성 향상)

  • Z-Hun Kim;Kyung Jun Yim;Seong-Joo Hong;Huisoo Jang;Hyun-Jin Jang;Suk Min Yun;Seung Hwan Lee;Choul-Gyun Lee;Chang Soo Lee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.41-48
    • /
    • 2023
  • The objective of the present study was to improve the biomass productivity of newly isolated freshwater green microalga Parachlorella sp. This was accomplished by culture conditions optimization, including CO2 concentration, superficial gas velocity, and light intensity, in 0.5 L bubble column photobioreactors. The supplied CO2 concentration and gas velocity varied from 0.032% (air) to 10% and 0.02 m/s - 0.11 m/s, respectively, to evaluate their effects on growth kinetics. Next, to maximize the production rate of Parachlorella sp., a lumostatic operation based on a specific light uptake rate (qe) was applied. From these results, the optimal CO2 concentration in the supplied gas and the gas velocity were determined to be 5% and 0.064 m/s, respectively. For the lumostatic operation at 10.2 µmol/g/s, biomass productivity and photon yield showed significant increases of 83% and 66%, respectively, relative to cultures under constant light intensity. These results indicate that the biomass productivity of Parachlorella sp. can be improved by optimizing gas properties and light control as cell concentrations vary over time.

Effect of Light Intensity on Cell Growth and Carotenoids Production in Chlamydomonas reinhardtii dZL (Chlamydomonas reinhardtii dZL 균주의 광도가 세포 생장과 카로티노이드 생산량에 미치는 영향 연구)

  • Seong-Joo Hong;Hyunwoo Kim;Jiho Min;Hanwool Park;Z-Hun Kim;Chang Soo Lee;Eonseon Jin;Choul-Gyun Lee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.82-89
    • /
    • 2023
  • Microalgae, as photosynthetic organisms, possess the ability to produce a diverse array of bioactive compounds. This study focused on the transformant Chlamydomonas reinhardtii dZL and subjected it to cultivation under varying light intensities (60, 120, 180, and 240 µmol/m2/s). Our aim was to assess the impact of light intensity on both microalgal biomass and carotenoid production. The cultivation took place in 80 mL bubble column photobioreactors, specifically the Multi-cultivator. Notably, the culture exposed to 240 µmol/m2/s exhibited the most rapid cell growth, surpassing even the cell concentration achieved at 180 µmol/m2/s by day 8. A detailed analysis of the specific irradiance rate over time unequivocally revealed a sharp decline in growth rates when the rate fell below 2 × 10-10 µmol/cell/s. Although the culture with 60 µmol/m2/s yielded the highest carotenoid content (1.2% of dry weight), the culture exposed to 240 µmol/m2/s recorded the highest carotenoid concentration at 8.9 mg/L owing to its higher biomass. Our findings reveal the critical importance of maintaining a specific irradiance rate above 2 × 10-10 µmol/cell/s to enhance biomass and carotenoid productivity. This study lays the groundwork for defining optimal light intensity conditions applicable to mass culture systems, with the objective of augmenting C. reinhardtii biomass and optimizing carotenoid productivity.