• Title/Summary/Keyword: 에러함수

Search Result 132, Processing Time 0.042 seconds

Improving the Performance of Fuzzy Classification Using Membership Function Learning (소속 함수 학습을 이용한 퍼지 분류의 성능 개선)

  • 곽동헌;김명원
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.462-465
    • /
    • 2004
  • 수치적인 데이터를 분류하기 위한 대표적인 방법은 퍼지 규칙을 사용하는 것이다. 하지만, 이러한 방법은 퍼지 소속 함수를 어떻게 정의하느냐에 따라 퍼지 분류의 성능이 크게 영향을 받는다는 문제점과 퍼지 규칙을 쉽게 이해하기 위해 가능한 퍼지 규칙의 수를 적게 유지해야한다는 문제점이 있다. 본 논문에서는 효과적이며 이해하기 쉬운 퍼지 규칙을 생성하기 위해 기울기 강하법을 기반으로 하는 소속 함수 학습 방법을 제안한다. 에러율을 감소하기 위해 Penalty 연산과 Reward 연산을 통해 소속 함수가 반복적으로 조절된다. 새로운 소속 함수는 Coverage 연산에 의해 생성된다. 또한 이해하기 쉬운 퍼지 규칙을 최적화하기 위해 학습된 소속 함수를 퍼지 결정 트리에 적용한다. 본 논문에서 제안한 알고리즘의 타당성을 확인하기 위해 벤치 마크 데이터인 Iris, Wisconsin Breast Cancer, Pima. Bupa 데이터를 이용하여 실험 결과를 보인다. 실험 결과를 통해 제안한 알고리즘이 기존의 C4.5와 FID 3.1 알고리즘보다 더 효과적이거나 비슷한 성능을 보임을 알 수 있다.

  • PDF

Improving the Performance of Fuzzy Classification Using Membership Function Learning (소속 함수 학습을 이용한 퍼지 분류의 성능 개선)

  • 곽동헌;류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.613-615
    • /
    • 2004
  • 수치적인 데이터를 분류하기 위한 대표적인 방법은 퍼지 규칙을 사용하는 것이다. 하지만 퍼지 규칙을 이용하는 방법은 퍼지 소속 함수를 어떻게 정의하느냐에 따라 퍼지 분류의 성능이 크게 영향을 받는다는 문제점이 있다. 따라서 퍼지 규칙을 쉽게 이해하기 위해서는 가능한 퍼지 규칙의 수를 적게 유지하는 것이 필요하다. 본 논문에서는 효과적이며 이해하기 쉬운 퍼지 규칙을 생성하기 위해 기울기 강하법을 기반으로 하는 소속 함수 학습 방법을 제안한다 에러율을 감소하기 위해 Penalty 연산과 Reward 연산을 통해 소속 함수가 반복적으로 조절된다 새로운 소속 함수는 Coverage 연산에 의해 생성된다. 또한 이해하기 쉬운 퍼지 규칙을 최적화하기 위해 학습된 소속 함수골 퍼지 결정 트리에 적용한다. 본 논문에서 제안한 알고리즘의 타당성을 확인하기 위해 벤치 마크 데이터인 Iris, Wisconsin Breast Cancer, Plma, Bupa 데이터를 이용하여 실험 결과를 보인다. 실험 결과를 통해 제안한 알고리즘이 기존의 C4.5와 FID 3.1 알고리즘보다 더 효과적이거나 비슷한 성능을 보임을 알 수 있다.

  • PDF

Availability Analysis of SRAM-Based FPGAs under the protection of SEM Controller (SEM Controller에 의해 보호되는 SRAM 기반 FPGA의 가용성 분석)

  • Ryu, Sang-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.601-606
    • /
    • 2017
  • SRAM-based FPGAs mainly used to develop and implement high-performance circuits have SRAM-type configuration memory. Soft errors in memory devices are the main threat from a reliability point of view. Soft errors occurring in the configuration memory of FPGAs cause FPGAs to malfunction. SEM(Soft Error Mitigation) Controllers offered by Xilinx can mitigate the influence of soft errors in configuration memory. SEM Controllers use ECC(Error Correction Code) and CRC(Cyclic Redundancy Code) which are placed around the configuration memory to detect and correct the errors. The correction is done through a partial reconfiguration process. This paper presents the availability analysis of SRAM-based FPGAs against soft errors under the protection of SEM Controllers. Availability functions were derived and compared according to the correction capability of SEM Controllers of several different families of FPGAs. The result may help select an SRAM-based FPGA part and estimate the availability of FPGAs running in an environment where soft errors occur.

Adaptive Error Concealment Method Using Affine Transform in the Video Decoder (비디오 복호기에서의 어파인 변환을 이용한 적응적 에러은닉 기법)

  • Kim, Dong-Hyung;Kim, Seung-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.712-719
    • /
    • 2008
  • Temporal error concealment indicates the algorithm that restores the lost video data using temporal correlation between previous frame and current frame with lost data. It can be categorized into the methods of block-based and pixel-based concealment. The proposed method in this paper is for pixel-based temporal error concealment using affine transform. It outperforms especially when the object or background in lost block has geometric transform which can be modeled using affine transform, that is, rotation, magnification, reduction, etc. Furthermore, in order to maintain good performance even though one or more motion vector represents the motion of different objects, we defines a cost function. According to cost from the cost function, the proposed method adopts affine error concealment adaptively. Simulation results show that the proposed method yields better performance up to 1.9 dB than the method embedded in reference software of H.264/AVC.

Robust Backward Adaptive Pitch Prediction for Tree Coding (트리 코팅에서 전송에러에 강한 역방향 적응 피치 예측)

  • 이인성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1587-1594
    • /
    • 1994
  • The pitch predictor is one of the most important part for the robust tree coder. The hybrid backward pitch adapation which is a combination of a block adaptation and a recursive adaptation is used for the pitch predictor. In order to improve the error performance and track the pitch period change of the input speech, it is proposed to smooth the input of the pitch predictor. The smoother with three taps can have fixed coefficients or variable coefficients depending on the estimated autocorrelation function of the output of the pitch synthesizer. The inclusion of a variable smoother can track the pitch period change within a block and reduce the effect of channel errors.

  • PDF

Efficient Image Transmission System Using IFS (IFS를 이용한 고효율 영상전송 시스템)

  • Kim, Sang Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6810-6814
    • /
    • 2014
  • The concept of IFS (Iterated Function System) was applied to compress and transmit image data efficiently. To compress the image data with IFS, self-similarity was used to search a similar block. To improve the coding performance for the iterated function system with natural images, the image will be formed of properly transformed parts of itself to minimize the coding error. The simulation results using the proposed IFS represent high PSNR performance and improved compression efficiency with the coefficient of a recursive function.

A design of fuzzy pattern matching classifier using genetic algorithms and its applications (유전 알고리즘을 이용한 퍼지 패턴 매칭 분류기의 설계와 응용)

  • Jung, Soon-Won;Park, Gwi-Tae
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.87-95
    • /
    • 1996
  • A new design scheme for the fuzzy pattern matching classifier (FPMC) is proposed. in conventional design of FPMC, there are no exact information about the membership function of which shape and number critically affect the performance of classifier. So far, a trial and error or heuristic method is used to find membership functions for the input patterns. But each of them have limits in its application to the various types of pattern recognition problem. In this paper, a new method to find the appropriate shape and number of membership functions for the input patterns which minimize classification error is proposed using genetic algorithms(GAs). Genetic algorithms belong to a class of stochastic algorithms based on biological models of evolution. They have been applied to many function optimization problems and shown to find optimal or near optimal solutions. In this paper, GAs are used to find the appropriate shape and number of membership functions based on fitness function which is inversely proportional to classification error. The strings in GAs determine the membership functions and recognition results using these membership functions affect reproduction of next generation in GAs. The proposed design scheme is applied to the several patterns such as tire tread patterns and handwritten alphabetic characters. Experimental results show the usefulness of the proposed scheme.

  • PDF

Design of Growing Rule-based Fuzzy Classifier (규칙 성장 기반 퍼지 분류기의 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1375-1376
    • /
    • 2015
  • 본 논문은 퍼지 클러스터링을 이용한 규칙 성장 기반 퍼지 분류기의 설계에 대해서 소개한다. 본 논문의 목적은 퍼지 클러스터링을 통해 형성된 증가된 퍼지 규칙을 이용한 새로운 설계 방법론을 개발하는 것이다. 제안된 분류기는 네개의 기능적인 부분으로 구성된다. 퍼지 규칙의 전반부는 퍼지 클러스터링 알고리즘을 이용해 구성된 멤버쉽 함수를 나타낸다. 후반부는 지역 모델을 구성한다. 지역 모델의 파라미터는 가중 최소 자승법에 의해 추정된다. 추론부에서는, 각 퍼지 규칙의 에러 측정후, 가장 높은 에러를 갖는 하나의 퍼지 규칙이 선택된다. 규칙성장 부분에서는, 네트워크의 강화를 위해 규칙의 성장 과정이 이루어지며, 선택된 규칙은 제안된 분류기에서 더 나은 성능을 위해 두 개 또는 세 개의 세분화된 퍼지 규칙으로 나누어진다. 이러한 새로운 규칙은 context 기반 Fuzzy C-Means 클러스터링에 의해서 형성된다. 제안된 규칙 기반 분류기의 효용성을 토론하며, 머신 러닝 데이터를 이용하여 실험을 수행하였다.

  • PDF

Neural Network Modeling of Actinometric Optical Emission Spectroscopy Information for Mo nitoring Plasma Process (플라즈마 공정 감시를 위한 Actinometric 광방사분광기 정보의 신경망 모델링)

  • Kwon, Sang-Hee;Bo, Kwang;Lee, Kyu-Sang;Uh, Hyung-Soo;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.177-178
    • /
    • 2007
  • 플라즈마 공정은 집적회로 제작을 위한 미세 박막의 증착과 패턴닝에 핵심적으로 이용되고 있다. 본 연구에서는 플라즈마공정감시와 제어에 응용될 수 있는 모델을 제안한다. 본 모델은 광방사분광기 (Optical emission spectroscopy-OES)정보와 역전파 신경망을 이용해서 개발하였다. 제안된 기법은 Oxide 식각공정에서 수집한 데이터에 적용하였으며, 체계적인 모델링을 위해 공정데이터는 통계적 실험계획법을 적용하여 수집되었다. Raw OES 정보대신, Actinometric OES 정보를 이용하였으며, 신경망의 예측성능은 유전자 알고리즘을 이용해서 증진시켰다. OES의 차수를 줄이기 위해 주인자 분석 (Principal Component Analysis-PCA)을 세 종류의 분산(100, 99, 98%)에 대해서 적용하였다. 최적화한 모델의 예측에러는 323 $\AA/min$이었다. 이전에 PCA를 적용하고 은닉층 뉴런의 함수로 최적화한 모델의 예측에러는 570 $\AA/min$이었으며, 개발된 모델은 이에 비해 43% 증진된 예측 성능을 보이고 있다.

  • PDF

Design of Fuzzy Logic Controller Considering Minimum Approximation Error (최소 근사화 에러를 고려한 퍼지 제어기의 설계)

  • 명환춘;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.197-203
    • /
    • 1998
  • 본 논문에서는 분석적인 방법을 통하여 퍼지 제어기의 안정성을 증명할 경우에 고려해야하는 근사화 에러를 슬라이딩 모드 제어 기법과 적응 제어 법칙을 이용하여 보정하는 방법을 제시하고 있다. 특히 본 논문에서는 퍼지 제어기의 안정성에 관한 이전의 연구들과는 달리 주어진 시스템의 각각의 상태 변수들에 대한 최대 민감도(Upper Bound of Sensitivity)에 관한 정보만이 미리 주어진 경우를 다루고 있다. 모의 실험은 라이프노프(Lyapunov)함수를 사용하여 안정성이 증명될 수 있으며, 모의 실험(Simulation)을 통하여 성능을 확인할 수 있다. 또한 제어기의 적용 방법에 따라서 퍼지 제어기의 특성을 강조하거나 또는 슬라이딩 모드 제어기의 특성을 보다 더 부각 시킬 수 있도록 설계할 수 있다는 장점이 있다.

  • PDF