• Title/Summary/Keyword: 에너지 회수회로

Search Result 63, Processing Time 0.02 seconds

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Irregular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(불규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.253-262
    • /
    • 2018
  • Oscillating Water Column (OWC) Wave Energy Converters (WEC) harness electricity through a Power-Take-Off (PTO) system from the induced-airflow by seawater oscillating inside a chamber. In general, an air chamber with a relatively small cross-sectional area is required compared to seawater chamber to obtain high-velocity air in the PTO system, and in order to simulate an accurate air flow rate in the air chamber, a three-dimensional study is required. In this study, the dynamic response of OWC-WEC that is equipped with the channel of seawater exchange for the case of irregular waves has been numerically studied. The open source CFD software, OLAFLOW for the simulation of wave dynamics to the openFOAM and FOAM-extend communities, was used to simulate the interaction between the device and irregular waves. Based on the numerical simulation results, we discussed the fluctuation characteristics of three dimensional air flow in the air-chamber, wave deformation around the structure and the seawater flow inside the channel of seawater exchange. The numerical results the maximum air flow velocity in the air-chamber increases as the Ursell value of the significant wave increases, and the velocity of airflow flowing out from the inside of air chamber to the outside is greater than the speed of flowing into the air chamber from the outside.

Biotechnology for the Mitigation of Methane Emission from Landfills (매립지의 메탄 배출 저감을 위한 생물공학기술)

  • Cho, Kyung-Suk;Ryu, Hee-Wook
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • Methane, as a greenhouse gas, is some 21~25 times more detrimental to the environmental than carbon dioxide. Landfills generally constitute the most important anthropogenic source, and methane emission from landfill was estimated as 35~73 Tg per year. Biological approaches using biocover (open system) and biofilter (closed system) can be a promising solution for older and/or smaller landfills where the methane production is too low for energy recovery or flaring and installation of a gas extraction system is inefficient. Methanotrophic bacteria, utilizing methane as a sole carbon and energy source, are responsible for the aerobic degradation (oxidation) of methane in the biological systems. Many bench-scale studies have demonstrated a high oxidation capacity in diverse filter bed materials such as soil, compost, earthworm cast and etc. Compost had been most often employed in the biological systems, and the methane oxidation rates in compost biocovers/boifilters ranged from 50 to $700\;g-CH_4\;m^{-2}\;d^{-1}$. Some preliminary field trials have showed the suitability of biocovers/biofilters for practical application and their satisfactory performance in mitigation methane emissions. Since the reduction of landfill methane emissions has been linked to carbon credits and trading schemes, the verified quantification of mitigated emissions through biocovers/biofilters is very important. Therefore, the assessment of in situ biocovers/biofilters performance should be standardized, and the reliable quantification methods of methane reduction is necessary.

Electrodeposition of some Alpha-Emitting Nuclides and its Isotope Determination by Alpha Spectrometry (몇가지 알파입자 방출 핵종의 전해석출 및 알파 스펙트럼 측정에 의한 그의 동위원소 정량)

  • Key-Suck Jung;In-Suck Suh
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.279-286
    • /
    • 1983
  • An apparatus was made for the electrodeposition of alpha emitting actinide nuclides, $^{207}Bi$ and $^{210}Po$. The electrodeposition was made on a polished stainless steel plate cathode. The anode was made of platinum wire and to stir the solution. With the ammonium chloride as electrolyte initial pH = 4, chloride concentration = 0.6M and solution volume = 15ml, a current of 1.5 ampere(current density = 0.59A/$cm^2$) was flowed for 100 minutes for the quantitative recovery of electrodeposition and on average recovery of 98.3% was obtained within ${\pm}$0.7% uncertainty. Alpha spectrometry of the electrodeposited sample showed alpha peaks from $^{210}Po, ^{234}U$ and $^{239}Pu$ having energy resolution (FWHM) of 18.3, 21.8 and 36.0 keV respectively. The electrodeposition and alpha spectrometry for a natural uranium sample of domestic origin gave $^{238}U : ^{234}U = 1 : 6.1{\times}10^{-5}$ and for a neutron-irradiated uranium sample did $^{238}U : ^{239}Pu : ^{241}Am = 100 : 0.0263 : 5.20{times}10^{-5}$. The result of $^{238}U$ determination in the irradiated sample by electrodeposition-alpha spectrometry was in accord within ${\pm}1.6%$ of relative error with the results of solid fluorimetry and mass spectrometry. For $^{239}Pu$ the result of electrodeposition-alpha spectrometry was in accord within ${\pm}$4.0% of relative error with the results of anion exchange separation and the thenoyltrifluoroacetone(TTA) extraction both followed by alpha spectrometries.

  • PDF