• Title/Summary/Keyword: 에너지 정의

Search Result 2,864, Processing Time 0.027 seconds

A Cluster-Organizing Routing Algorithm by Diffusing Bitmap in Wireless Sensor Networks (무선 센서 네트워크에서의 비트맵 확산에 의한 클러스터 형성 라우팅 알고리즘)

  • Jung, Sangjoon;Chung, Younky
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.2
    • /
    • pp.269-277
    • /
    • 2007
  • Network clustering has been proposed to provide that sensor nodes minimize energy and maximize a network lifetime by configuring clusters, Although dynamic clustering brings extra overhead like as head changing, head advertisement, it may diminish the gain in energy consumption to report attribute tasks by using cluster heads. Therefore, this paper proposes a new routing algorithm which configures cluster to reduce the number of messages when establishing paths and reports to the sink by way of cluster heads when responding sens ing tasks. All sensor nodes only broadcast bitmap once and maintain a bitmap table expressed by bits, allowing them to reduce node energy and to prolong the network lifetime. After broadcasting, each node only updates the bitmap without propagation when the adjacent nodes broad cast same query messages, This mechanism makes nodes to have abundant paths. By modifying the query which requests sensing tasks, the size of cluster is designed dynamically, We try to divide cluster by considering the number of nodes. Then, all nodes in a certain cluster must report to the sub- sink node, The proposed routing protocol finds easily an appropriate path to report tasks and reduces the number of required messages for the routing establishment, which sensor nodes minimize energy and maximize a network lifetime.

  • PDF

The Effective Recovery of Gold from the Invisible Gold Concentrate Using Microwave-nitric Acid Leaching Method (마이크로웨이브-질산침출방법에 의한 비가시성 금의 회수율 향상)

  • Lee, Jong-Ju;Myung, Eun-Ji;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.185-200
    • /
    • 2019
  • This study aimed to liberate gold from invisible gold concentrate (Au = 1,840.00 g/t) through microwave nitric acid leaching experiments. For the purpose, this study conducted microwave-nitric acid leaching experiments and examined nitric acid concentration effect, microwave leaching time effect and sample addition effect. The results of the experiments were as follows: Au (gold) contents were not detected in all of the microwave leaching conditions. In the insoluble-residue, weight loss rate tended to decrease as the nitric acid concentration, microwave leaching time and sample addition increased. In an XRD analysis with solid-residue, it was suggested that gypsum and anglesite were formed due to dissolution of calcite and galena by nitric acid solution. When a fire assay was carried out with insoluble-residue, it was discovered that gold contents of the solid-residue were 1.3 (Au = 2,464.70 g/t) and 28.8 (52,952.80 g/t) times more than those of concentrate. But in the gold contents recovered, a severe gold nugget effect appeared. It is expected that the gold nugget effect will decrease if a sampling method of concentrate is improved in the microwave-nitric acid leaching experiments and filtering paper with smaller pore size is used for leaching solution and burned filter paper is used for sampling in lead-fire assay.

A Study on Surface Properties of Mechanical Interfacial Behavior of DGEBA/PMR-15 Blends (DGEBA/PMR-15 블렌드계의 표면특성 변화가 기계적 계면특성에 미지는 영향)

  • Park, Soo-Jin;Lee, Hwa-Young;Han, Mijeong;Hong, Sung-Kwon
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In this work, the effect of PMR-15 content on the variation of surface free energy of the DGEBA/PMR-15 blend system was investigated in terms of contact angles and mechanical interfacial tests. Based on FT-IR result of the blend system. C=O (1,772, $1,778cm^{-1}$) and C-N ($1,372cm^{-1}$) peaks appeared with imidization of PMR-15 and -OH ($3,500cm^{-1}$) peak showed broadly at 10 phr of PMR-15 by ring-opening of epoxy. Contact angle measurements were performed by using deionized water and diiodomethane as testing liquids. As a result, the surface free energy of the blends gave a maximum value at 10 phr of PMR-15, due to the significant increasing of specific component. The mechanical interfacial properties measured from the critical stress intensity factor ($K_{IC}$) and the critical strain energy release rate ($G_{IC}$) showed a similar behavior with the results of surface energetics. This behavior was probably attributed to The improving of the interfacial adhesion between intermolecules, resulting from increasing the hydrogen bondings of the blends.

  • PDF

An Analysis on the Change of Convergence in Smart City from Industrial Perspectives (스마트시티 산업의 융합변화 분석)

  • Jo, Sung Su;Lee, Sang Ho
    • Journal of the Korean Regional Science Association
    • /
    • v.34 no.4
    • /
    • pp.61-74
    • /
    • 2018
  • This study aims to analyze the convergence change of smart city industries in Korea. Industries of Smart city can be defined ICTs and Knowledge embedded construction industry. The input output model and structural path analysis have been done using the input output tables published by Bank of Korea in 1980 and 2014. GDP deflator was applied to the input output tables. 403 industries were reclassified into 27 industries and 8 industries categories: Agriculture and Mining(AM), Non-IT Manufacture(NITM), IT Manufacture(ITM), Energy Supply(EnS), Construction as smart city(C), IT Service(ITS), Knowledge Service(KS), Etc. Service(EtS). The results are as follows; First, the input output coefficient analysis showed that The information and communication service industry(ITS) and the energy supply industry(EnS) have increased input to the construction industry(C). On the other hands, knowledge service industry(KS) and etc. service industries(EtS) decreased. Second, the multiplier analysis revealed that construction industry(C) led by smart city had a great influence on ITS, EnS, ITM and NITM directly and indirectly. Furthermore, The IT industry had the biggest change from 1980 to 2014. Third, the smart city industry has created a new convergence of 117, and it has been leading to segmentation of the structure. Change of convergence has been proceeding mainly in the ITS and EnS, NITM, ITM industries.

Centrifugal Test on Behavior of the Dolphin Structure under Ship Collision (선박충돌 시 돌핀 구조물의 거동에 대한 원심모형실험)

  • Oh, SeungTak;Bae, WooSeok;Cho, SungMin;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.61-70
    • /
    • 2011
  • The impact protection system consists of an arrangement of circular sheet pile cofferdams-denoted dolphin structuredeeply embedded in the seabed, filled with crushed rock and closed at the top with a robust concrete cap. Centrifuge model tests were performed to investigation the behaviors of dolphins in this study. Total 7 quasi-model tests and 11 dynamic model tests were performed. The main experimental results can be summarized as follows. Firstly, The experimental force-displacement results for quasi-static tests show a limited influence on the initial stiffness of the structure from the change in fill density and the related change in the stiffness of the fill. And by comparing the dissipation at the same dolphin displacement it was found that the denser fill increase the dissipation by 16% for the 20m dolphin and by 23% for the 30m dolphin. The larger sensitivity for the large dolphin is explained by a larger contribution to the dissipation from strain in the fill. In low level impacts the dynamic force-response is up to 26~58% larger than the quasi-static and the dissipation response is showed larger in small displacement. Hence, it is concluded conservative to use the quasi-static response characteristics in the approximation of the response, and it is further concluded that the dolphin resistance to low level impacts is demonstrated to be equivalent and even superior to the high level impacts.

Analysis of Rebound Behavior of Blast-Resistant Door Subjected to Blast Pressure (폭압 작용에 의한 방폭문의 반발거동 해석)

  • Shin, Hyun-Seop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.371-383
    • /
    • 2021
  • Steel-concrete single-leaf blast-resistant doors, having steel box and slab inside, are installed on the wall using supporting members such as hinges and latches. Several studies have been conducted on their deflection behavior in the same direction as that of the blast pressure, but studies on their deflection behavior in the opposite direction, that is, studies on negative deflection behavior are relatively insufficient. In this study, we conducted a parameter analysis using finite element analysis on blast-resistant doors, on their rebound behavior in the negative deflection phase. Results revealed that the plastic deformation of the door, and the change in momentum and kinetic energy during rebound, were major factors influencing the rebound behavior. Greater rebound force was developed on the supporting members in the impulsive region, than in the quasi-static region; due to the characteristics in the impulsive region, where the kinetic energy developed relatively greater than the strain energy. In the design process, it is necessary to consider excessive deformation that could occur in the supporting members as the rebound behavior progresses. Additionally, it was found that in the case of steel-concrete blast doors, the rebound force increased relatively more, when the effects of both rebound and negative blast pressure contributed to the negative deflection of the door. Since conditions for the occurrence of this superposition effect could vary depending on structural characteristics and explosion conditions, further investigation may be required on this topic.

Proposal of a Pilot Plant (2T/day) for Solid Fuel Conversion of Cambodian Mango Waste Using Hybrid Hydrothermal Carbonization Technology (하이브리드 수열탄화기술을 이용한 캄보디아 망고 폐기물 고형연료화 실증플랜트 (2T/day) 제안)

  • Han, Jong-il;Lee, Kangsoo;Kang, Inkook
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • Hybrid hydrothermal carbonization (Hybrid HTC) technology is a proprietary thermochemical process for two or more organic wastes.The reaction time is less than two hours with temperature range 180~250℃ and pressure range 20~40bar. Thanks to accumulation of the carbon of the waste during Hybrid HTC process, the energy value of the solid fuel increases significantly with comparatively low energy consumption. It has also a great volume reduction with odor removal effect so that it is evaluated as the best solid fuel conversion technology for various organic wastes. In this study of the hybrid hydrothermal carbonization, the effect on the calorific value and yield of Cambodian mango waste were evaluated according to changes in temperature and reaction time. Through the study, parameter optimization has been sought with improving energy efficiency of the whole plant. It is decomposed in the Hydro-Carbonation Technology to Generate Gas. At this time, it is possible to develop manufacturing and production technologies such as hydrogen (H2) and methane (CH4). Based on the results of the study, a pilot plant (2t/day) has been proposed for future commercialization purpose along cost analysis, mass balance and energy balance calculations.

An Analysis for the Effect of ESP/gas Lift Hybrid System on Oil Productivity (전기공저펌프/가스리프트 혼합시스템이 오일 생산성에 미치는 영향 분석)

  • Lee, Hyesoo;Iranzi, Joseph;Wang, Jihoon;Son, Hanam
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • Selection of a suitable artificial lift is important in terms of efficient operation and economics for oil production. In general, process of well design includes the selection of artificial lift, but the oil recovery could be enhanced by use of hybrid system combined with two types of artificial lift method according to reservoir condition for oil production. Electric submersible pump (ESP), as a presentative artificial lift method, is a manner for supplying the pressure in the lower part of oil well by using of a multi-stage centrifugal pump with an electric energy. However, there is a disadvantage that has a limit to the application period because of mechanical defection on ESP. Accordingly, it is possible to reduce the shutdown time of production well by applying the ESP/Gas lift hybrid system, which is to switch to a gas lift when an ESP is defective. This study describes the effect of ESP/gas lift hybrid system compared with ESP method for a onshore horizontal well locating in the of Permian basin, USA. As a result of study, ESP/gas lift hybrid system could make more effective productivity than ESP method. Also, we quantitatively predicted how much economic benefit would be obtained when the hybrid system was applied in the production well.

Effect of Shear Rate on Strength of Non-cemented and Cemented Sand in Laboratory Testing (실내시험 시 재하속도가 미고결 및 고결 모래의 강도에 미치는 영향)

  • Moon, Hong Duk;Kim, Jeong Suk;Woo, Seung-Wook;Tran, Dong-Kiem-Lam;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.23-36
    • /
    • 2021
  • In this paper, the effect of shear rate on internal friction angle and unconfined compressive strength of non-cemented and cemented sand was investigated. A dry Jumunjin sand was prepared at loose, medium, and dense conditions with a relative density of 40, 60 and 80%. Then, series of direct shear tests were conducted at shear rates of 0.32, 0.64, and 2.54 mm/min. In addition, a cemented sand with cement ratio of 8% and 12% was compacted into a cylindrical specimen with 50 mm in diameter and 100 mm in height. Unconfined compression tests on the cemented sand were performed with various shear rates such as 0.1, 0.5, 1, 5 and 10%/min. Regardless of a degree of cementation, the unconfined compressive strength of the cemented sand and the angle of internal friction of the non-cemented sand tended to increase as the shear rate increased. For the non-cemented sand, the angle of internal friction increased by 4° at maximum as the shear rate increased. The unconfined compressive strength of the cemented sand also increased as the shear rate increased. However, its increasing pattern declined after the standard shear rate (1 mm/min). A discrete element method was also used to analyze the crack initiation and its development for the cemented sand with shear rate. Numerical results of unconfined compressive strength and failure pattern were similar to the experimental results.

Study on Analysis of Occupant Safety Index & Behavior Using Full-Scale Crash Test Data of Crash Cushion (충격흡수시설의 실물차량 충돌시험 데이터를 이용한 탑승자 안전도 및 충돌거동 분석에 관한 연구)

  • Joo, Jae Woong;Kum, Ki Jung;Jang, Dae Young;Kim, Bum Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.163-170
    • /
    • 2008
  • According to the rules, a crash cushion is supposed to set up products that is satisfied with the standard of a performance test after performing the car crash test by road safety facilities and management guide. For development of crash cushion, performance should be estimated through the car crash test eventually. However, there is no reasonable design method which considers passenger's safety and only depend on crash test without an alternative plan. Therefore it incurs a loss materially and takes a lot. Therefore, we are asked to create a systematic design of the crash cushion. This study shows that a scientific basis of applying single degree of freedom when it designs the crash cushion after analyzing vehicle crash test data of crash cushion and also represents design of crash cushion through single degree of freedom response spectrum using calculated by crash test data on crash cushion.