• Title/Summary/Keyword: 에너지 속도

Search Result 3,538, Processing Time 0.032 seconds

EU Utilities's renewable business model and Marekt penetration strategy for domestic utilities (EU 전력회사들의 신재생에너지 비즈니스모델과 국내 전력회사의 시장진입 전략)

  • Ko, Kyoung-Ho;Kim, Jun-Hyung;Lee, Jae-Gul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.206-212
    • /
    • 2006
  • 최근 세계 전력시장은 시장개방 및 통합, 환경규제 강화, 기술개발에 따라 신재생에너지 시장이 매우 빠른 속도로 성장하고 있다. 이와 발맞추어 최근 국제에너지 가격의 급등과 미국, 중국 등의 에너지안보 강화에 따라 신재생에너지는 미래 에너지원의 큰 축을 차지할 것으로 전망됨에 따라 EU 전력시장 내 전력회사들은 신재생에너지 시장을 핵심 사업영역의 하나로 추진하고 있다. 반면 국내 신재생에너지 시장은 정부 보급목표와 비교할 때 미미한 수준에 머무르고 있다. 이는 국내 신재생에너지 지원정책의 한계와 시장의 구조적인 문제점에 기인하는 것으로 분석된다. 따라서 본 논문에서는 EU 신재생에너지 시장의 분석을 통해 국내 신재생에너지 시장 확대를 위한 대안과 국내 전력회사들의 역할 및 시장진입전략을 살펴보고자 한다.

  • PDF

Power Generation Performance Evaluation according to the Vehicle Running on the Hybrid Energy Harvesting Block (하이브리드 에너지하베스팅 블록의 차량주행 발전성능 평가)

  • Kim, Hyo-Jin;Park, Ji-Young;Jin, Kyu-Nam;Noh, Myung-Hyun
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.307-314
    • /
    • 2016
  • Energy harvesting technique is to utilize energy that is always present but wasted. In this study, we have developed the energy harvester of the hybrid method utilizing both vibration and pressure of the vehicle traveling a road or parking lot. In the previous study, we have developed a prototype energy harvester, improved hybrid energy harvester, and developed a final product that offers improved performance in the hybrid module. The results were published in the previous paper. In this study, we installed the finally developed hybrid module in the actual parking lot. And we measured the power generation performance due to pressure and vibration, and the running speed of the vehicle when the vehicle is traveling. And we compared the results with those obtained in laboratory conditions. In a previous study performed in laboratory conditions the maximum power of the energy block was 1.066W when one single time of vibration, and 1.830W when succession with 5 times. On the other hand, in this study, we obtained the average power output of 0.310W when the vehicle is running at an average 5 km/h, 0.670W when at an average 10 km/h, and 1.250W when at an average 20 km/h, and 2.160W when at an average 5 km/h. That is, the higher the running speed of the vehicle has increased power generation performance. However, when compared to laboratory conditions, the power generation performance of the energy block in driving speed by 20km/h was lower than those in laboratory conditions. In addition, when compared to one time of vibration of laboratory conditions, power generation performance was higher when the running speed 20km/h or more and when five consecutive times in laboratory conditions, it was higher when the running speed 30km/h or more. It could be caused by a difference of load conditions between the laboratory and the actual vehicle. Thus, applying the energy block on the road would be more effective than that on the parking lot.

The Study of combustion characteristic and kinetic study of wastes and RDF (폐기물 및 RDF에 대한 연소특성 및 반응속도에 관한 연구)

  • Lee, Keon Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.76-84
    • /
    • 2013
  • In this study, thermal weight loss, non-isothermally experiment, chemical composition analysis, calorific value, activation energy (E) were investigated to analysis the kinetic study of RDF, wood pellets, waste wood, waste textile and waste vinyl. When the chemical composition of solidification fuel was compared, the moisture content of RDF was less than the wood pellet and when the kinetic study was compared, the combustion reaction rate of the waste vinyl was higher than any other solidification fuels. However when the combustion efficiency was compared by the activation energy, the RDF had the higher efficiency than other wastes. RDF can be found that the reaction takes place between $320{\sim}720^{\circ}C$ depending on the heating rate.

Fast Pyrolysis of Miscanthus: Biocrude Oil Yields and Characteristics (억새류의 급속열분해를 통해 회수한 바이오원유의 수율과 특성)

  • Bok, Jin Pil;Choi, Hang Seok;Choi, Yeon Seok;Park, Hoon Chae;Moon, Youn Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.107.2-107.2
    • /
    • 2011
  • 억새는 척박한 토양 조건에서도 쉽게 자라며 관리가 용이하다는 장점이 있어 바이오에너지 작물로 주목을 받고 있다. 억새는 주로 Miscanthus sacchariflorus(물억새)와 Miscanthus sinensis(참억새) 그리고 두 억새의 잡종인 Miscanthus giganteus로 구분되며, 최근 기존의 억새보다 생체량을 크게 늘린 거대억새가 개발되기도 하였다. 본 실험에서는 우리나라 전역에서 가장 흔하게 볼 수 있는 물억새와 참억새를 유동층 반응기를 이용하여 급속열분해 하였다. 본 연구의 목적은 억새로부터 얻은 바이오원유와 나무로부터 얻은 바이오원유의 특성을 비교하고, 시료투입속도의 변화를 주어 억새로부터 얻은 바이오원유의 수율과 특성을 알아보고자 함이다. 시료의 투입속도는 200g/h, 300g/h, 500g/h, 1000g/h로 변화를 주었으며, 반응온도($500^{\circ}C$), 공탑속도(0.19m/s), 응축기온도($10^{\circ}C$)는 매 실험마다 동일하게 유지하였다. 수집한 바이오원유는 공업분석을 통해 연료로서의 가치를 알아보았다. 목재를 급속열분해 한 경우 바이오원유의 수율은 56.03wt.%로 동일한 조건에서 억새를 급속열분해 한 경우 보다 약 6wt.%가량 높았다. 바이오원유의 발열량은 큰 차이가 없었으나 수분과 점도에서 큰 차이를 보였다. 투입속도가 증가할수록 바이오원유의 수율은 증가하는 경향을 보였으며, 시간당 1000g을 투입하였을 때는 수율이 감소하였으나 수율의 변화는 크지 않았다. 투입속도가 증가하는 경우 바이오원유의 고위발열량과 점도는 감소하고 수분이 증가하는 경향을 보였다.

  • PDF

A Study on the Ground Vibration Reduction Characteristics of Air-Deck Blasting Method Using Paraffin Waxed Paper Tube (파라핀 지관 구조체를 활용한 Air-Deck 발파공법의 지반진동 저감특성에 관한 연구)

  • Gyeong-Jo, Min;Young-Keun, Kim;Chan-Hwi, Shin;Sang-Ho, Cho
    • Explosives and Blasting
    • /
    • v.41 no.1
    • /
    • pp.32-45
    • /
    • 2023
  • Environmental regulations in Korea for blasting at industrial sites have conservative standards, which often result in reduced efficiency and cost-effectiveness due to the consideration of environmental regulations and public complaints. Therefore, there is a need for blasting methods that can reduce environmental damage while improving construction efficiency and cost-effectiveness. In this study, we analyzed the effects of the PA-Deck (Paraffin Air-Deck) blasting method, which is a kind of Air Decoupled Charge method in principle utilizing a paraffin-infused paper tube as an air gap, on reducing blasting hazards and improving blasting efficiency. The analysis also evaluated the effectiveness of newly applied equipment for collecting blasting vibration data, and derived the relationship between the explosion velocity and vibration velocity of explosives, and performed frequency analysis of the vertical component. The results of the blasting vibration velocity analysis showed that the Paraffin Waxed Paper Tube-based blasting method exhibited significantly lower vibration velocities compared to conventional blasting methods, and it was judged that more uniformly small-sized fragmented rocks were generated.

A Study on dynamic Fracturing Behavior of Anisotropic Granite by SHPB Test (스플릿 흡킨슨 바(SHPB)를 이용한 이방성 화강암의 동적파괴거동 연구)

  • Choi, Mi-Jin;Cho, Sang-Ho;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.214-218
    • /
    • 2008
  • Dynamic fracturing of anisotropic granite was investigated by SHPB (Split Hopkinson Pressure Bar). Energy absorption during the test and maximum stress were increased as strain rate increased. Maximum stresses in every direction were dependent on the strain rate but not so sensitive to anisotropy. Elastic wave velocity was decreased as strain rate increased and dependent on strain rate in every direction. Especially, elastic wave velocity decreased more rapidly in a strong rock.

Study on the Aerodynamics and Control Characteristics of 5 MW Wind Turbine (5MW급 풍력 터빈의 공력 및 제어 특성에 관한 연구)

  • Tai, Fengzhu;Kang, Ki-Won;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.59-69
    • /
    • 2011
  • 5MW wind turbine is regarded as a promising system for offshore wind farms in the western sea of Korean. And the wind turbine is developed in many companies but not much information is known about it. In this study, aerodynamics and control characteristics depending on several control methods is reviewed on 5MW wind turbine, in which configuration data of the turbine are used from the previous study of NREL. For the calculations, GH_Bladed, which is certificated software by GL, is used and compared with data from FAST code of NREL. This study shows that how much power production, and aerodynamic performances and loads can be obtained with different controls in the operation of 5MW wind turbine, which is expected to be useful in the design of the wind turbine system.

A Study on the Deformation and Perforation Problem for Steel Plates Subjected to High-Speed Collision and Superhigh-Speed Collision (고속충돌 및 초고속충돌 강판구조물의 대변형 관통문제에 관한 연구)

  • 원석희;이경언;고재용;이계희;이제명;백점기;이성로
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.95-99
    • /
    • 2004
  • This paper describe inner-collision-characteristics of the ship structural plates when the projectile collides with plate-material using LS-DYNA3D which is general and useful finite element analysis tool in collision problem fields. The series analyses were carried out from high speed(41.56m/s-118.9m/s) to ultrahigh speed(544.05m/s-800m/s). Through these analyses we can approach empirical formula to estimate penetration limit of the ship structural plates with which the projectile of various speed collides.

  • PDF

Case Analysis of Seismic Velocity Model Building using Deep Neural Networks (심층 신경망을 이용한 탄성파 속도 모델 구축 사례 분석)

  • Jo, Jun Hyeon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.2
    • /
    • pp.53-66
    • /
    • 2021
  • Velocity model building is an essential procedure in seismic data processing. Conventional techniques, such as traveltime tomography or velocity analysis take longer computational time to predict a single velocity model and the quality of the inversion results is highly dependent on human expertise. Full-waveform inversions also depend on an accurate initial model. Recently, deep neural network techniques are gaining widespread acceptance due to an increase in their integration to solving complex and nonlinear problems. This study investigated cases of seismic velocity model building using deep neural network techniques by classifying items according to the neural networks used in each study. We also included cases of generating training synthetic velocity models. Deep neural networks automatically optimize model parameters by training neural networks from large amounts of data. Thus, less human interaction is involved in the quality of the inversion results compared to that of conventional techniques and the computational cost of predicting a single velocity model after training is negligible. Additionally, unlike full-waveform inversions, the initial velocity model is not required. Several studies have demonstrated that deep neural network techniques achieve outstanding performance not only in computational cost but also in inversion results. Based on the research results, we analyzed and discussed the characteristics of deep neural network techniques for building velocity models.

Effect of Shear Rate on Strength of Non-cemented and Cemented Sand in Laboratory Testing (실내시험 시 재하속도가 미고결 및 고결 모래의 강도에 미치는 영향)

  • Moon, Hong Duk;Kim, Jeong Suk;Woo, Seung-Wook;Tran, Dong-Kiem-Lam;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.23-36
    • /
    • 2021
  • In this paper, the effect of shear rate on internal friction angle and unconfined compressive strength of non-cemented and cemented sand was investigated. A dry Jumunjin sand was prepared at loose, medium, and dense conditions with a relative density of 40, 60 and 80%. Then, series of direct shear tests were conducted at shear rates of 0.32, 0.64, and 2.54 mm/min. In addition, a cemented sand with cement ratio of 8% and 12% was compacted into a cylindrical specimen with 50 mm in diameter and 100 mm in height. Unconfined compression tests on the cemented sand were performed with various shear rates such as 0.1, 0.5, 1, 5 and 10%/min. Regardless of a degree of cementation, the unconfined compressive strength of the cemented sand and the angle of internal friction of the non-cemented sand tended to increase as the shear rate increased. For the non-cemented sand, the angle of internal friction increased by 4° at maximum as the shear rate increased. The unconfined compressive strength of the cemented sand also increased as the shear rate increased. However, its increasing pattern declined after the standard shear rate (1 mm/min). A discrete element method was also used to analyze the crack initiation and its development for the cemented sand with shear rate. Numerical results of unconfined compressive strength and failure pattern were similar to the experimental results.