• Title/Summary/Keyword: 에너지 생산 온실

Search Result 208, Processing Time 0.253 seconds

Synthesis and Characterization of Oxygen Evolution Nanofiber electrocatalyst for Water Electrolysis (수전해 산소발생을 위한 나노섬유 전기화학 촉매 합성 및 특성분석)

  • Won, Mi-So;Jang, Myeong-Je;Lee, Gyu-Hwan;Choe, Seung-Mok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.186-186
    • /
    • 2016
  • 수소는 연료전지 등의 에너지원으로 사용될 경우 NOx, SOx, $CO_2$ 등의 한경오염물질, 온실가스를 발생시키지 않기 때문에 친환경 에너지원으로 각광을 받고 있다. 수전해는 수소를 생산하는 가장 간단하고 효율적인 방법 중의 하나로서, 잉여전력 또는 신재생에너지에 의한 전기에너지를 통해 환경오염물질 발생 없이 고순도의 수소를 얻을 수 있으며 분산/대량 생산이 용이하다. 수전해에서 환원전극에서는 수소발생반응이 일어나고, 산화전극에서는 산소발생반응이 일어난다. 이때 주로 산소발생전극 촉매로는 과전압이 작게 걸리고 활성이 우수한 귀금속 계열의 $IrO_2$$RuO_2$ 등의 촉매가 현재 사용되고 있다. 본 연구에서는 고분자 용액을 만들어 전기방사를 이용하여 공정변수에 따른 직경과 morphology를 확인하였고, 고가의 귀금속 산화물 대신 저렴한 전이금속산화물인 Cu와 Co를 이용하여 1D 나노섬유를 산소발생 촉매로 합성하였다. 합성된 나노섬유의 구조적, 물리화학적 특성을 분석하고 산소발생반응(OER)에 대한 전기화학적 활성 및 내구성을 평가하였다.

  • PDF

Overview of Gas Hydrates as a Future Energy Source and Their Physical/Chemical Properties (미래 에너지로서 가스 하이드레이트의 개관 및 물리/화학적 특성)

  • Cha, Minjun;Min, Kyoung-Won
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.670-687
    • /
    • 2018
  • This paper reviews the structures, physical and chemical properties, origins and global distribution, amount of energy resources, production technologies, and environmental impacts of gas hydrates to understand the gas hydrates as future energy sources. Hydrate structures should be studied to clarify the fundamentals of natural gas hydrates, hydrate distributions, and amount of energy sources in hydrates. Phase equilibria, dissociation enthalpy, thermal conductivity, specific heat, thermal diffusivity, and fluid permeability of gas hydrate systems are important parameters for the the efficient recovery of natural gas from hydrate reservoirs. Depressurization, thermal stimulation, inhibitor injection, and chemical exchange methods can be considered as future technologies to recover the energy sources from natural gas hydrates, but so far depressurization is the only method to have been applied in test productions of both onshore and offshore hydrates. Finally, we discuss the hypotheses of environmental impacts of gas hydrates and their contribution to global warming due to hydrate dissociation.

Fixation of $CO_2$ in Ammonia Process by Potassium Carbonate Solution Absorption (암모니아 공정에서 탄산칼륨용액 흡수에 의한 $CO_2$ 고정화)

  • 이정섭;송준석;윤형선;서성규
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.485-486
    • /
    • 2003
  • 산업사회의 발전과 문화생활의 향상에 따라 에너지 사용은 계속 증가해 왔으며, 이에 따른 환경문제 또한 꾸준히 제기되고 있다 산업구조상 화석연료를 주 에너지원으로 사용하고 있는 우리나라의 경우 온실 가스중 $CO_2$가 87.7%를 차지한다. 또한 이 $CO_2$가 대기 중에서 10.0%가 초과되면 인체에 심각한 신진대사의 이상, 중앙신경계의 장애가 발생할 수 도 있다(환경부, 2000). 에너지 경제연구원은 "2010년까지 2000년 수준으로 $CO_2$ 배출량을 줄이면서 국내 총생산은 17.5% 감소할 전망"이라고 분석했다(에너지 관리공단, 2003). (중략)

  • PDF

LCA on Lettuce Cropping System by Top-down Method in Protected Cultivation (시설상추 생산체계에 대한 top-down 방식 전과정평가)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1185-1194
    • /
    • 2011
  • This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle inventory) DB for lettuce production system in protected cultivation. The results of data collection for establishing LCI DB showed that the amount of fertilizer input for 1 kg lettuce production was the highest. The amounts of organic and chemical fertilizer input for 1 kg lettuce production were 7.85E-01 kg and 4.42E-02 kg, respectively. Both inputs of fertilizer and energy accounted for the largest share. The amount of field emission for $CO_2$, $CH_4$ and $N_2O$ for 1 kg lettuce production was 3.23E-02 kg. The result of LCI analysis focused on GHG (Greenhouse gas) showed that the emission value to produce 1 kg of lettuce was 8.65E-01 kg $CO_2$. The emission values of $CH_4$ and $N_2O$ to produce 1 kg of lettuce were 8.59E-03 kg $CH_4$ and 2.90E-04 kg $N_2O$, respectively. Fertilizer production process contributed most to GHG emission. Whereas, the amount of emitted nitrous oxide was the most during lettuce cropping stage due to nitrogen fertilization. When GHG was calculated in $CO_2$-equivalents, the carbon footprint from GHG was 1.14E-+00 kg $CO_2$-eq. $kg^{-1}$. Here, $CO_2$ accounted for 76% of the total GHG emissions from lettuce production system. Methane and nitrous oxide held 16%, 8% of it, respectively. The results of LCIA (Life Cycle Impact assessment) showed that GWP (Global Warming Potential) and POCP (Photochemical Ozon Creation Potential) were 1.14E+00 kg $CO_2$-eq. $kg^{-1}$ and 9.45E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively. Fertilizer production is the greatest contributor to the environmental impact, followed by energy production and agricultural material production.

Evaluation of Mitigation Technologies and Footprint of Carbon in Unhulled Rice Production (벼 생산 단계에서 탄소발생량과 감축요소 평가)

  • Lee, Deog Bae;Jung, Soon Chul;So, Kyu Ho;Jeong, Jae Woo;Jung, Hyun Chul;Kim, Gun Yeob;Shim, Gyo Moon
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.129-142
    • /
    • 2012
  • This study was carried out to evaluate carbon footprint during unhulled rice production and to compare mitigation technologies of methane, main carbon source during rice production, Carbon footprint of unhulled rice was a sum of $CO_2$ emission of agri-materials manufacture, rice cultivation and waste treatment. It was emitted 1.40 kg $CO_2$ during unhulled rice production, its distribution was 71.1% by $CH_4$ emission of rice cultivation, 11.8% of $N_2O$ emission by nitrogen application and 7.6% of complex fertilizer manufacture. $CH_4$ emission could be mitigated by some technologies; cultivation of the early maturing rice variety emitted lower by 44.4% than the mid maturing variety, intermittent drainage of submerged water by 43.8% than the continuous flooding condition, direct seeding by 32.0% than transplanting cultivation, no-ploughing by 20.9% than ploughing cultivation. It means that LCA on Global Warming Potential and the statistical data on innovated technical practice are key tools to systemize Measurable-Reportable-Verifiable (MRV) system for carbon footprint and carbon emission trade in the farm base.

A Study on Optimal Microgrid Operation considering Fuel Cell (연료전지를 고려한 마이크로그리드의 최적운용에 관한 연구)

  • Lee, Ji-Hye;Kim, Hak-Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1235-1237
    • /
    • 2012
  • 연료전지는 온실가스를 배출하지 않기 때문에 차세대 친환경에너지로 평가 받고 있으며, 추후 마이크로그리드에 많은 도입이 예상된다. 이에 본 논문에서는 전력과 열을 동시에 생산하는 연료전지를 고려한 마이크로그리드의 최적운용계획을 수립하고 사례연구를 통하여 제시된 수리적 모델의 타당성을 입증하고자 한다.

State-of-the-art of Life Cycle Assessment for Biodiesel Production from Plant Biomass (식물성 바이오매스로부터 바이오디젤 생산에 대한 LCA 연구 현황)

  • Seo, Bong-Kuk;Song, Seung-Koo
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Biodiesel is a type of biofuel obtained from bioresources and able to use in diesel vehicles as an alternative/additive to petro diesel. In recent biodiesel research, there are three main issues which include high quality biodiesel, low cost feed stock and a highly efficient biodiesel production process. The sustainable production and use of biodiesel are attracting much attention in the renewable energy field. In this paper, we review some of the literatures related to environmental and economic evaluation for biodiesel production and analysis the issues including life cycle assessment (LCA), global warming potential (GWP), energy consumption, biodiesel production cost, production technologies and feedstock.

A Fundamental Study for Design of Electric Energy Harvesting Device using PZT on the Road (도로용 압전발전체 시험모듈 설계를 위한 기초 실험 연구)

  • Lee, Jae-Jun;Ryu, Seung-Ki;Moon, Hak-Yong;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.159-166
    • /
    • 2011
  • Green house gas emissions are increasing as development of the industrial economy of the international community. Many countries in the world are endeavoring to reduce green house gas emissions under severe climate change. In order to protect grobal warming, government is trying to reduce green gas emissions under "Low Carbon Green Growth Policy" and investing climiate-firendly industries such as renewable energy harvesting. Renewable energy has been rapidly developing as a result of investment for development technology of using natural energy such as solar, wind, tidal, etc. There are lots of waste energy in the road space. However, nobody is not interested in waste energy from the road space. This paper present a fundamentally experimental study of energy harvesting technique to use waste energy in the road. The waste energy in the road is covered a pressure and impact of vehicles on the road, the radiant heat from asphalt pavement, road noise and vibration etc. In this study, an energy harvesting device using piezoelectric element is proposed and various tests are conducted to investigate a characteristic of this device as function of impact loading based on piezoelectric effect behavior. This paper shows the energy harvesting results of the device using domestic piezoelectirc element as a function of impact load size and pavement types.

Analysis of the Effect of Fog Cooling during Daytime and Heat Pump Cooling at Night on Greenhouse Environment and Planst in Summer (하절기 주간 포그 냉방과 야간 히트펌프 냉방이 온실 환경 및 작물에 미치는 영향 분석)

  • Lee, Taeseok;Kim, Jingu;Park, Seokho;Lee, Choungkeun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.328-334
    • /
    • 2021
  • This study was conducted to analyze the effect of fog cooling during daytime and heatpump cooling at night in greenhouses in summer. During daytime, the average temp. and RH of the control greenhouse which had shading screen were 32.1℃ and 59.4%. and the average temp. and RH of the test greenhouse which had fog cooling were 30.0℃ and 74.3%. At this time, the average outside temp. and RH were 31.4℃ and 57.7%. So, the temp. of the control was 0.7℃ higher than outside temp., but the temp. of the test was 1.4℃ lower than outside and 2.1℃ lower than control. The average RH was 74.3% in the test and 59.4% in control. The average temp. and RH of the control greenhouse which had natural ventilation at night were 25.2℃ and 85.1%, and the average temp. and RH of the test greenhouse which had heat pump cooling were 23.4℃, 82.4%. The average outside temp. and RH at night were 24.4℃ and 88.2%. The temp. of the control was 0.8℃ higher than outside temp., but the temp. of the test was 1.0℃ lower than outside and 1.8℃ lower than control. The average RH was 82.4% in test and 85.1% in control greenhouse. There was no significant difference between the plants growth eight weeks after planting. But after the cooling treatment, the values of stem diameter, plant height, chlorophyll in test were higher than control. The total yield was 81.3kg in test, 73.8kg in control, so yield of test was 10.2% higher than control. As a result of economic analysis, 142,166 won in profits occurred in control greenhouse, but 28,727 won in losses occurred in test greenhouse, indicating that cooling treatment was less economical.

Microbial Catalysts for the Production of Thermo-resistant Bioplastics (내열성 바이오플라스틱 생산을 위한 미생물 촉매 개발)

  • Oh, Young Hoon;Lee, Seung Hwan;Park, Si Jae
    • Prospectives of Industrial Chemistry
    • /
    • v.17 no.3
    • /
    • pp.27-37
    • /
    • 2014
  • 온실가스축적으로 인한 지구온난화를 비롯한 기후변화 및 고갈되어가는 석유를 비롯한 화석원료에 대한 문제를 해결하기 위해 재생가능한 자원으로부터 바이오기반 케미칼 및 고분자 등의 화학제품을 생산하는 바이오화학 공정이 많은 관심을 받고 있다. 본 기고문에서는 바이오화학공정에 핵심적인 촉매로 사용되고 있는 재조합 미생물 및 효소의 최근 개발동향을 내열성 엔지니어링 플라스틱인 바이오나일론의 생산을 위하여 개발되고 있는 바이오촉매를 중심으로 살펴보고자 한다.