• Title/Summary/Keyword: 에너지 보존법칙

Search Result 40, Processing Time 0.024 seconds

Algorithm of Battery's Status Prediction using Electric Battery Sensor (Electric Battery Sensor를 이용한 Battery의 상태 예측 알고리즘 개발)

  • Nho, Hee-Jin;Lee, Se-Won;Ko, Kuk-Won
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.753-756
    • /
    • 2011
  • 지속적인 충/방전에 의하여 표준 수명 보다 더 빠른 노화 현상을 일으키는 배터리의 효율적인 관리를 위하여, 배터리의 내부 상태를 모니터링 하였다. 정확한 배터리 모니터링을 위해서 해당하는 배터리의 잔존 용량 및 잔존 수명을 정확히 예측할 수 있어야 하며, 이를 위해 Open Voltage를 사용한 실험, 에너지 보존 법칙에 의한 충전 전류 측정법, 시동 시 최대 전류와 내부 저항의 변화량을 알아내는 실험을 하였다. Open Voltage 실험 결과, SOC수치에 따른 특정 전압의 범위를 알 수 있었고, 이 전압은 온도에 의해 변동된다는 것을 확인할 수 있었다. 충전 그래프를 그려본 결과 충전횟수와 완충에 걸리는 시간은 반비례하며, 배터리 내부에 충전되는 총 전류의 양과도 관계가 있었다. 시동 실험에서는 최저 전압 드롭 값과 최대 공급 전류의 범위를 알 수 있었으며, 특정 SOC 구간 내 내부 저항의 값을 차이를 알 수 있었다. 이 값들은 각 SOC의 수치에 비례한 결과를 보였다. 이 결과들을 정리하여, 배터리 내부 상태를 예측하는 방법을 제안하고자 한다.

  • PDF

Direct Energy Method of Power System Stability Analysis and its Application by using Energy Conservation Law (에너지보존법칙을 이용한 전력계통 안정도 직접 해석법에서의 응용)

  • Lee, Yong-Hoon;Cho, Byoung-Hoon;Ryu, Heon-Su;Moon, Young-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1207-1214
    • /
    • 1999
  • Many papers have recently been presented to develop energy functions for power systems. However, earlier studies adopted case-by-case approaches, which failed to give a general approach to deal with various kinds of generator models. In this paper, two useful theorems are developed regarding the integral relationships of the generator power versus its phasor current and voltage. By using the proposed theorems, an exact energy conservation law can be derived from the complex integral. The proposed energy conservation law, which is free of the generator model, can be utilized to develop energy functions for various kinds of generator models including the speed governors and exciters. An illustrative example is given for a multimachine system with the Eq' model of generator. This thesis also shows a possibility of more accurate and fast stability analysis by using the proposed Energy Conservation Law.

  • PDF

Performance analysis for load control of R744(carbon dioxide) transcritical refrigeration system using hot gas by-pass valve (핫가스 바이패스 밸브를 이용한 R744용 초임계 냉동사이클의 부하제어에 대한 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2189-2194
    • /
    • 2009
  • The automatic hot gas by-pass technique is applied to control the capacity of refrigeration and air-conditioning system when operating at part load. In the scheme, the hot gas from the compressor is extracted and injected into the outlet of an evaporator through a hot gas by-pass valve. Thus, In this paper, the hot gas by-pass scheme for CO2 is discussed and analyzed on the basis of mass and energy conservation law. A comparative study of the schemes is performed in terms of the coefficiency of performance (COP) and cooling capacity. The operating parameters considered in this study include compressor efficiency, superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : the superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

The Study for Analysis of Impact Force of Debris Flow According to the Location of Check Dam (사방댐 위치변화에 따른 토석류의 충격력 해석에 관한 연구)

  • Kim, Sung-Duk;Lee, Ho-Jin;Chang, Hyung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.409-418
    • /
    • 2019
  • Debris flows occur in mountainous areas due to heavy rains resulting from climate change and result in disasters in the downstream area. The purpose of this study is to estimate the impact force of a debris flow when a check dam according is installed in various locations in the channel of a highly mountainous area. A Finite Differential Element Method (FDM) model was used to simulate the erosion and deposition based on the equation for the mass conservation and momentum conservation while considering the continuity of the fluid. The peak impact force from the debris flow occurred at 0 to 5 sec and 15 to 20 sec. When the supplied water discharge was increased, greater peak impact force was generated at 16 to 19 sec. This means that when increasing the water supply, the velocity of the debris flow became faster, which results in increased energy of the consolidation between the particles of the water and the sediment made. If a number of check dams were to be set up, it would be necessary to investigate the impact force at each location of the check dam. The results of this study could provide useful information in predicting the impact force of the debris flow and in installing the check dams in appropriate locations.

Design and Output Characteristic Analysis of Electro-Mechanical Ignition Safety Device (전기-기계식 점화안전장치 설계 및 출력 특성 해석)

  • Jang, Seung-Gyo;Lee, Hyo-Nam;Oh, Jong-Yun;Oh, Seok-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1166-1173
    • /
    • 2011
  • Electro-Mechanical Ignition Safety Device(EMISD) for solid rocket motor is designed and manufactured. The EMISD utilizes a true rotary solenoid for arming mechanism and an electric squib(initiator) for generating ignition energy. In order to prove the ignition capability of the EMISD, 10-cc Closed Bomb Test(CBT) is performed, which measures the pressure built by high temperature and high pressure gas generated by operating EMISD. The pressure built in the free volume of 10-cc closed bomb and the opening time of the ignition gas outlet are calculated using one dimensional gas dynamic model which is composed of the ideal gas equation and mass-energy conservation equation. Comparing the test result with model prediction, it is realized that the pressure built in the free volume of closed bomb due to the firing of EMISD, has the efficiency ratio of about 34%.

A Study on the Reversible SCR Servo Amplifier (정역전이 가능한 SCR 서보증폭기에 관한 연구)

  • Ahn, B. W.;Park, S. K.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.190-198
    • /
    • 1995
  • Many industrial servo amplifiers employ power transister as output device. Thyristor converters are not adopted to drive servo motor, although thyristor is superior to power TR in power rating, noise immunity, price, and size. The reason is, thyristor has no ability of self turn - off. Here in this paper line commutation, in which thyristor is turned off naturally since cathode voltage is higher than anode as time goes by, is employed to turn on thyristor with a delicate sequence. We developed thyristor servo amplifier which does not cause any damage on thyristor because it is designed to prevent triggering the two SCRs in the same arm simultaneously. And it was made clearly how to trigger SCR without any power line shorting and also harmonic analysis is carried out with the aid of FFT analyzer and proved that it can be used even severe reactive load. The designed circuit operated as a good DC amplifier in conventinal servomotor and the results can be use as a position control system application.

  • PDF

A Study on the Side Impact Characteristics Occurred from SUV-to-Passenger Car using LS-DYNA (LS-DYNA를 이용한 SUV와 승용차의 측면충돌 특성에 대한 연구)

  • Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.217-226
    • /
    • 2018
  • Since the sides of a vehicle are designed asymmetrically unlike its front or rear, the degree of deformation of the car body greatly differs depending on the site of collision if a broadside collision takes place. When elastic deformation and plastic deformation occur in the car body occur due to a collision, the kinetic energy is absorbed into the body, and the momentum decreases. Generally, an analysis of traffic accidents analyzes the vehicle's behavior after a collision by the law of momentum conservation and corrects the error of the amount of energy absorption due to the deformation of the car body, applying a restitution coefficient. This study interpreted a finite element vehicle model applying the structure of the car body and the material properties of each part with LS-DYNA, analyzed the result and drew the restitution coefficient and the depth of penetration according to the contact area of the vehicle in a broadside collision between an SUV and a passenger car. When the finally calculated restitution coefficient and depth of penetration were applied to the examples of the actual traffic accidents, there was an effect on the improvement of the error in the result. It was found that when the initial input value, drawn using the finite element analysis model, it had a higher reliability of the interpretation than that of the existing analysis techniques.

Modeling of the charge and discharge behavior of the 2S2P(2 series-2 parallel) AGM battery system for commercial vehicles (상용자동차용 직·병렬 AGM 배터리 시스템의 충·방전 거동 모델링)

  • Lee, Jeongbin;Kim, Ui Seong;Yi, Jae-Shin;Shin, Chee Burm
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.346-355
    • /
    • 2012
  • Recent in the world environmental issues and energy depletion problems have been received attention. One way to solve these problems is to use hybrid electric vehicles (HEVs). Therefore, the interest in HEV technology is higher than ever before. Viable candidates for the energy-storage systems in HEV applications may be absorbent glass mat (AGM) lead-acid, nickel-metal-hydride (Ni-MH) and rechargeable lithium batteries. The AGM battery has advantages in terms of relatively low cost, high charge efficiency, low self-discharge, low maintenance requirements and safety as compared to the other batteries. In order to implement HEV system in required more electric power commercial vehicles AGM batteries was connected to 2 series-2 parallels (2S2P). In this study, a one-dimensional modeling is carried-out to predict the behaviors of 2S2P AGM batteries system during charge and discharge. The model accounts for electrochemical reaction rates, charge conservation and mass transport. In order to validate the model, modeling results are compared with the experimentally measured data in various conditions.

Methodology for Evaluating Collision Risks Using Vehicle Trajectory Data (개별차량 주행패턴 분석을 통한 교통사고 위험도 분석 기법)

  • Kim, Joon-Hyung;Song, Tai-Jin;Oh, Cheol;Sung, Nak-Moon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.51-62
    • /
    • 2008
  • An innovative feature of this study is to propose a methodology for evaluating safety performance in real time based on vehicle trajectory data extracted from video images. The essence of evaluating safety performance is to capture unsafe car-following and lane-changing events generated by individual vehicles traveling within video surveillance area. The proposed methodology derived three indices including real-time safety index(RSI) based on the concept of safe stopping distance, time-to-collision(TTC), and the collision energy based on the conservation of momentum. It is believed that outcomes would be greatly utilized in developing a new generation of video images processing(VIP) based traffic detection systems capable of producing safety performance measurements. Relevant technical challenges for such detection systems are also discussed.

Standard Penetration Test Performance in Sandy Deposits (모래지반에서 표준관입시험에 따른 관입거동)

  • Dung, N.T.;Chung, Sung-Gyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.39-48
    • /
    • 2013
  • This paper presents an equation to depict the penetration behavior during the standard penetration test (SPT) in sandy deposits. An energy balance approach is considered and the driving mechanism of the SPT sampler is conceptually modeled as that of a miniature open-ended steel pipe pile into sands. The equation consists of three sets of input parameters including hyperbolic parameters (m and ${\lambda}$) which are difficult to determine. An iterative technique is thus applied to determine the optimized values of m and ${\lambda}$ using three measured values from a routine SPT data. It is verified from a well-documented record that the simulated penetration curves are in good agreement with the measured ones. At a given depth, the increase in m results in the decrease in ${\lambda}$ and the increase in the curvature of the penetration curve as well as the simulated N-value. Generally, the predicted penetration curve becomes nearly straight for the portion of exceeding the seating drive zone, which is more pronounced as soil density increases. Thus, the simulation method can be applied to extrapolating a prematurely completed test data, i.e., to determining the N value equivalent to a 30 cm penetration. A simple linear equation is considered for obtaining similar results.