• Title/Summary/Keyword: 에너지 모멘트 비

Search Result 105, Processing Time 0.024 seconds

Evaluation of Seismic Performance for an Internally Confined Hollow CFT Column (내부 구속 중공 CFT 기둥의 내진 성능 평가)

  • Han, Taek Hee;Kim, Sung Nam;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2007
  • Column tests were performed for a new type of column, the internally confined hollow concrete filled tube column (ICH CFT column), to evaluate its seismic performance. The seismic performances for two types of ICH CFT columns and a general solid RC column were evaluated and compared by quasi-static tests. The displacements and the lateral loads of column specimens were measured during tests. Ductilities, absorbed energy, equivalent damping ratios, damage indices were calculated from recorded data. From the test results, the ICH CFT column shows superior seismic performances with double moment capacity and larger energy absorbing capacity over that of a solid RC column.

Seismic Analysis of Mid Rise Steel Moment Resisting Frames with Relative Stiffness of Connections and Beams (접합부와 보의 상대강성을 고려한 중층 철골 모멘트 골조의 내진해석)

  • Ha, Sung-Hwan;Kang, Cheol-Kyu;Han, Hong-Soo;Han, Kweon-Gyu;Choi, Byong-Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.595-606
    • /
    • 2011
  • This study was conducted to investigate the seismic behavior of steel member resisting frames considering the relative stiffness of the connection and beams. Six-story steel moment frames were designed to study the seismic behavior. The connections were classified into Double Web-Angle connections (DWAs), Top- and Seat-angles with double Web-angles (TWSs), FEMA-Test Summary No. 28, Specimen ID: UCSD-6 (SAC), and Fully Restrained (FR). The rotational stiffness of the semi-rigid connections was estimated using the Three-Parameter Power Model adopted by Chen and Kishi. The relative stiffness, which is the ratio of the rotational stiffness of the connections to the stiffness of the beams, was used. Push-over, repeated loading, and time history analysis were performed for all the frames. The seismic behavior of each frame was analyzed with the story drift, plastic hinge rotation, and hysteretic energy distribution.

Energy Demand in Steel Structures with Buckling Restrained Braces (좌굴이 방지된 가새가 설치된 철골조 건물의 에너지 요구량)

  • 최현훈;김진구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.29-37
    • /
    • 2003
  • In this study, a story-wise distribution of hysteretic energy in steel moment resisting framse(MRF), buckling restrained braced frames(BRBF), and hinge-connected framed structures with buckling restrained braces(HBRBF) subjected to various earthquake ground excitations was investigated. Sixty earthquake ground motions recorded in different soil conditions were used to compute the energy demand in model structure. According to analysis results, the hysteretic energy in MRF and BRBF turned out to be the maximum at the base and monotonically diminishes with increasing height. However the story-wise distribution of hysteretic energy in HBRBF was relatively uniform over the height of the structure. In this case damage is not concentrated in a single story, and therefore it is considered to be more desirable than other systems. The story-wise energy distribution pattern under three different soil types turned out to be approximately the same.

Studies on Probabilistic Nonlinear First Ply Failure Loads and Buckling Loads of Laminated Composite Panels (적층복합재료 패널의 확률론적 비선형 초기파단하중 및 좌굴하중에 관한 연구)

  • Bang, Je-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.1-10
    • /
    • 2013
  • Probabilistic nonlinear first ply failure loads of flat composite panels and nonlinear buckling loads of curved composite panels with cutouts are estimated to provide the more reliable main load carrying structure in the renewable energy industry and offshore structures. The response surface method approximates limit state surface to a second order polynomial form of random variables with the results of deterministic finite element analyses at given sampling design points. Furthermore, the iterative linear interpolation scheme is used to obtain a more accurate approximation of the limit state surface near the most probable failure point (MPFP). The advanced first order second moment method and the Monte Carlo method are performed on an approximated limit state surface to evaluate the probability of failure. Finally, the sensitivity of the reliability index with respect to transformed random variables is investigated to figure out the main random variables that have an effect on failures.

First-principles Calculations on Magnetism of 1H/1T Boundary in Monolayer MoS2 (제일원리계산에 의한 단층 MoS2의 1H/1T 경계 자성)

  • Jekal, Soyoung;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.71-75
    • /
    • 2016
  • Monolayer $MoS_2$ is energetically most stable when it has a 1H phase, but 1H to 1T phase transition ($1H{\rightarrow}1T$) is easily realized by various ways. Even though magnetic moment is not observed during $1H{\rightarrow}1T$, $0.049{\mu}_B/MoS_2$ is obtained in local 1T phase; 75% 2H and 25% 1T phases are mixed in ($2{\times}2$) supercell. Most magnetic moment is originated from the 1T phase Mo atom in the supercell, while the magnetic moments of other atoms are negligible. As a result, magnetic/non-magnetic boundary is created in the monolayered $MoS_2$. Our result suggests that $MoS_2$ can be applied for spintronics such as a spin transistor.

Connection Performance of Steel Moment Frame with Out-of-Plane Beam Skew (면외방향 어긋난 보를 갖는 철골모멘트골조의 접합부 성능)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.84-91
    • /
    • 2022
  • This study investigated the behavior of out-of-plane skewed moment connections that were designed as IMFs, as per the Korean standards. A total of 14 finite element models were constructed with the consideration of two types (single- and double-sided connections) and four levels of skew angle (0°, 10°, 20°, and 30°). The results indicated that the skewed connections considered in this study met the acceptance criteria for IMFs given by the codes. However, the load-carrying capacities of skewed connections were decreased as the skew angle increased. For the connection with a skew angle of 30°, the peak load was noted to be 13% less and the energy dissipation capacity could be 26% less than that of non-skewed connection. In addition, because of the skewed nature, the stress distribution in the skewed beam flange near the connection was asymmetric and the stresses were concentrated on the beam inner flange. Column twisting induced by the skewed configuration was very small and negligible in the beam and column combination considered in this study.

Seismic Performance of Beam-to-Column Joints with Wedge Connectors (쐐기형 강재 접합장치를 사용한 보-기둥 접합부의 내진성능)

  • Park, Jong Won;Kang, Seoung Min;Hwang, In Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.655-661
    • /
    • 2007
  • A new steel connection method using wedges known as Self-Locking Connector has been developed. In this study, experimental investigation was conducted to verify the seismic performance of steel beam-to-column joints with Self-Locking Connectors. Cyclic-loading tests were performed on two beam-to-column joints with Self-Locking Connectors. The two beam-to-column joint specimens were of the cantilever-type and had the same details. Test results showed that beam-to-column joints with Self-Locking Connectors were able to developa total rotation capacity of 0.06 radian, which is greater than the 0.04 radian required for Special Moment Frames. Moreover, their energy absorption capacity was much greater than that of conventional joints.

A Study on Hybrid Wall System on Connection Type of Coupling Beam (커플링 보의 접합방식에 따른 복합 벽체 시스템에 관한 연구)

  • Yun, Hyun-Do;Park, Wan-Shin;Han, Byung-Chan;Yun, Yeo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.201-208
    • /
    • 2003
  • The Hybrid Wall System(HWS) building composed of center core reinforced concrete walls and exterior steel frame has open space around the center core walls. It is necessary to develop design methodologies for the HWS building that the coupled shear walls withstand the most of lateral load and expect the most energy dissipation at the coupling beams and at wall foots. Major factors considered in this paper are connection type of coupling beams and scale of story. The studies of the system are investigated in terms of shear force, overturning moment, maximum lateral displacement, story drift ratio, and dynamical characteristics under the action of vertical and lateral forces such as wind and seismic loads.

Quantum Chemical Calculations of Surface Hydroxyl Groups as Acid Site (Faujasite 표면 수산기의 산성에 관한 양자화학적 해석)

  • Kim, Myung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.361-363
    • /
    • 1998
  • The CNDO/2 calculations have been applied on cluster models for the representative hydroxyls on faujasite surface to get total energies, dipole moments, Wiberg bond orders and formal charge densities. Quantum chemical calculations indicate that the acid strength of surface hydroxyls of faujasite depends on the geometry of hydroxyls and the Si/Al ratios of framework. The $Br{\ddot{o}}nsted$ acid strength of bridging hydroxyl is higher than that of isolated hydroxyls. The stabilities of cluster models increased with increase of the Si/Al ratios.

  • PDF

The Electronic Structure and Magnetism of bcc Rh(001) Surface (체심 입방구조 Rh(001) 표면의 전자구조와 자성)

  • Cho, L.H.;Bialek, B.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.206-210
    • /
    • 2008
  • According to the recent reports the bulk bcc Rh is ferromagnetic with a small difference of energy compared to paramagnetic state. In this study, the electronic structure and magnetism for bcc Rh(001) surface are investigated by means of the all-electron full potential linearized augmented plane wave method within the generalized gradient approximation. It is found that the surface ferromagnetic state is preferable over the paramagnetic one. For unrelaxed system, the magnetic moment of the surface layer, $0.48{\mu}B$, is slightly increased comparing with the bulk value, $0.41{\mu}B$ while the value of the subsurface layer, $0.23{\mu}B$, is much smaller than the bulk value. The total energy and atomic force calculations show that the surface layer is relaxed downward and the subsurface layer moves upward to reduce the layer distance between the surface and subsurface layers by 7.0 %. The relaxation effect leads to weakening the surface magnetic properties. Specifically, the value of the magnetic moment of the surface atom is decreased to $0.36{\mu}B$. Since the spin polarization of the subsurface layer is only $0.14{\mu}B$, it is concluded that the bcc Rh(001) surface is rather weakly ferromagnetic.