• Title/Summary/Keyword: 에너지 검증

Search Result 2,051, Processing Time 0.039 seconds

Measurement and Monte Carlo Simulation of 6 MV X-rays for Small Radiation Fields (선형가속기의 6 MV X-선에 대한 소형 조사면 측정과 몬테 카를로 시뮬레이션)

  • Jeong Dong Hyeok;Lee Jeong Ok;Kang Jeong Ku;Kim Soo Kon;Kim Seung Kon;Moon Sun Rock
    • Radiation Oncology Journal
    • /
    • v.16 no.2
    • /
    • pp.195-202
    • /
    • 1998
  • Purpose : In order to obtain basic data for treatment plan in radiosurgery, we measured small fields of 6 MV X-rays and compared the measured data with our Monte Carlo simulations for the small fields. Materials and Methods : The small fields of 1.0, 2.0 and 3.0 cm in diameter were used in this study. Percentage depth dose (PDD) and beam Profiles of those fields were measured and calculated. A small semiconductor detector, water phantoms, and a remote control system were used for the measurement Monte Carlo simulations were Performed using the EGS4 code with the input data prepared for the energy distribution of 6 MV X-rays, beam divergence, circular fields and the geometry of the water phantoms. Results : In the case of PDD values, the calculated values were lower than the measured values for all fields and depths, with the differences being 0.3 to 5.7% at the depths of 20 to 20.0 cm and 0.0 to 8.9% at the surface regions. As a result of the analysis of beam profiles for all field sizes at a depth of loom in water phantom, the measured 90% dose widths were in good agreement with the calculated values, however, the calculated Penumbra radii were 0.1 cm shorter than measured values. Conclusion : The measured PDDs and beam profiles agreement with the Monte Carlo calculations approximately. However, it is different when it comes to calculations in the area of phantom surface and penumbra because the Monte Carlo calculations were performed under the simplified geometries. Therefore, we have to study how to include the actual geometries and more precise data for the field area in Monte Carlo calculations. The Monte Carlo calculations will be used as a useful tool for the very complicated conditions in measurement and verification.

  • PDF

Improved Activity Estimation using Combined Scatter and Attenuation Correction in SPECT (단일광자방출단층촬영 영상에서 산란 및 감쇠 보정에 위한 절대방사능 측정)

  • Lee, Jeong-Rim;Choi, Chang-Woon;Lim, Sang-Moo;Hong, Seong-Wun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.382-390
    • /
    • 1998
  • Purpose: The purpose of this study was to evaluate the accuracy of radioactivity quantitation in Tc-99m SPECT by using combined scatter and attenuation correction. Materials and Methods: A cylindrical phantom which simulates tumors (T) and normal tissue (B) was filled with varying activity ratios of Tc-99m. We acquired emission scans of the phantom using a three-headed SPECT system (Trionix, Inc.) with two energy windows (photopeak window: $126{\sim}154keV$ and scatter window: $101{\sim}123keV$). We performed the scatter correction with dual-energy window subtraction method (k=0.4) and Chang attenuation correction. Three sets of SPECT images were reconstructed using combined scatter and attenuation correction (SC+AC), attenuation correction (AC) and without any correction (NONE). We compared T/B ratio, image contrast [(T-B)/(T+B)] and absolute radioactivity with true values. Results: SC+AC images had the highest mean values of T/B ratios. Image contrast was 0.92 in SC+AC, which was close to the true value of 1, and higher than AC (0.77) or NONE (0.80). Errors of true activity by SPECT images ranged from 1 to 11% for SC+AC, $22{\sim}47%$ for AC, and $2{\sim}16%$ for NONE in a phantom which was located 2.4cm from the phantom surface. In a phantom located 10.0cm from the surface, SC+AC underestimated by 24%, NONE 40%. However, AC overestimated by 10%. Conclusion: We conclude that accurate SPECT activity quantitation of Tc-99m distribution can be achieved by dual window scatter correction combind with attenuation correction.

  • PDF

Air Sampling and Isotope Analyses of Water Vapor and CO2 using Multi-Level Profile System (다중연직농도시스템(Multi-Level Profile System)을 이용한 수증기와 이산화탄소 시료채취 및 안정동위원소 조성 분석)

  • Lee, Dong-Ho;Kim, Su-Jin;Cheon, Jung-Hwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.277-288
    • /
    • 2010
  • The multi-level $H_2O/CO_2$ profile system has been widely used to quantify the storage and advection effects on energy and mass fluxes measured by eddy covariance systems. In this study, we expanded the utility of the profile system by accommodating air sampling devices for isotope analyses of water vapor and $CO_2$. A pre-evacuated 2L glass flask was connected to the discharge of an Infrared Gas Analyzer (IRGA) of the profile system so that airs with known concentration of $H_2O$ and $CO_2$ can be sampled. To test the performance of this sampling system, we sampled airs from 8 levels (from 0.1 to 40 m) at the KoFlux tower of Gwangneung deciduous forest, Korea. Air samples in the 2L flask were separated into its component gases and pure $H_2O$ and $CO_2$ were extracted by using a vacuum extraction line. This novel technique successfully produced vertical profiles of ${\delta}D$ of $H_2O$ and ${\delta}^{13}C$ of $CO_2$ in a mature forest, and estimated ${\delta}D$ of evapotranspiration (${\delta}D_{ET}$) and ${\delta}^{13}C$ of $CO_2$ from ecosystem respiration (${\delta}^{13}C_{resp}$) by using Keeling plots. While technical improvement is still required in various aspects, our sampling system has two major advantages over other proposed techniques. First, it is cost effective since our system uses the existing structure of the profile system. Second, both $CO_2$ and $H_2O$ can be sampled simultaneously so that net ecosystem exchange of $H_2O$ and $CO_2$ can be partitioned at the same temporal resolution, which will improve our understanding of the coupling between water and carbon cycles in terrestrial ecosystems.

Numerical and Experimental Study on the Coal Reaction in an Entrained Flow Gasifier (습식분류층 석탄가스화기 수치해석 및 실험적 연구)

  • Kim, Hey-Suk;Choi, Seung-Hee;Hwang, Min-Jung;Song, Woo-Young;Shin, Mi-Soo;Jang, Dong-Soon;Yun, Sang-June;Choi, Young-Chan;Lee, Gae-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-174
    • /
    • 2010
  • The numerical modeling of a coal gasification reaction occurring in an entrained flow coal gasifier is presented in this study. The purposes of this study are to develop a reliable evaluation method of coal gasifier not only for the basic design but also further system operation optimization using a CFD(Computational Fluid Dynamics) method. The coal gasification reaction consists of a series of reaction processes such as water evaporation, coal devolatilization, heterogeneous char reactions, and coal-off gaseous reaction in two-phase, turbulent and radiation participating media. Both numerical and experimental studies are made for the 1.0 ton/day entrained flow coal gasifier installed in the Korea Institute of Energy Research (KIER). The comprehensive computer program in this study is made basically using commercial CFD program by implementing several subroutines necessary for gasification process, which include Eddy-Breakup model together with the harmonic mean approach for turbulent reaction. Further Lagrangian approach in particle trajectory is adopted with the consideration of turbulent effect caused by the non-linearity of drag force, etc. The program developed is successfully evaluated against experimental data such as profiles of temperature and gaseous species concentration together with the cold gas efficiency. Further intensive investigation has been made in terms of the size distribution of pulverized coal particle, the slurry concentration, and the design parameters of gasifier. These parameters considered in this study are compared and evaluated each other through the calculated syngas production rate and cold gas efficiency, appearing to directly affect gasification performance. Considering the complexity of entrained coal gasification, even if the results of this study looks physically reasonable and consistent in parametric study, more efforts of elaborating modeling together with the systematic evaluation against experimental data are necessary for the development of an reliable design tool using CFD method.

Least-Square Fitting of Intrinsic and Scattering Q Parameters (최소자승법(最小自乘法)에 의(衣)한 고유(固有) Q와 산란(散亂) Q의 측정(測定))

  • Kang, Ik Bum;McMechan, George A.;Min, Kyung Duck
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.557-561
    • /
    • 1994
  • Q estimates are made by direct measurements of energy loss per cycle from primary P and S waves, as a function of frequency. Assuming that intrinsic Q is frequency independent and scattering Q is frequency dependent over the frequencies of interest, the relative contributions of each, to a total observed Q, may be estimated. Test examples are produced by computing viscoelastic synthetic seismograms using a pseudo spectral solution with inclusion of relaxation mechanisms (for intrinsic Q) and a fractal distribution of scatterers (for scattering Q). The composite theory implies that when the total Q for S-waves is smaller than that for P-waves (the usual situation), intrinsic Q is dominating; when it is larger, scattering Q is dominating. In the inverse problem, performed by a global least squares search, intrinsic $Q_p$ and $Q_s$ estimates are reliable and unique when their absolute values are sufficiently low that their effects are measurable in the data. Large $Q_p$ and $Q_s$ have no measurable effect and hence are not resolvable. Standard deviation of velocity $({\sigma})$ and scatterer size (A) are less unique as they exhibit a tradeoff as predicted by Blair's equation. For the P-waves, intrinsic and scattering contributions are of approximately the same importance, for S-waves, the intrinsic contributions dominate.

  • PDF

High fiber and high carbohydrate intake and its association with the metabolic disease using the data of KNHANES 2013 ~ 2017 (고식이섬유 및 고탄수화물 섭취와 대사질환과의 연관성)

  • Moon, Heesoo;Ha, Kyungho;Song, YoonJu
    • Journal of Nutrition and Health
    • /
    • v.52 no.6
    • /
    • pp.540-551
    • /
    • 2019
  • Purpose: Dietary fiber is a component of carbohydrate that is linked closely with the carbohydrate quality, but few studies have investigated the association of high fiber intake with the cardiometabolic risk factors in Koreans. This study examined the association of high fiber and high carbohydrate intake with the cardiometabolic risk factors among Korean adults. Methods: This study included 15,095 adults aged ≥20 years, who participated in the 2013 ~ 2017 KNHANES. The dietary intake was obtained using a 24-h dietary recall method. The associations of high fiber and high carbohydrate intake with metabolic syndrome and dyslipidemia were examined by sex using multiple logistic regression analysis. Results: The median of dietary fiber was 23.6 g/day in men and 20.0 g/day in women. Dietary fiber intake increased gradually as dietary carbohydrate groups increased except for ≥80% of energy from the carbohydrate group. Women in the highest quintile of fiber intake showed a 33% lower risk of metabolic syndrome compared with those in the third quintile. When stratified into low fiber (LF) and high fiber (HF) groups using Adequate Intake of fiber for Koreans, men in the third quartile of carbohydrate intake showed a 44% and 51% higher risk of metabolic syndrome and atherogenic dyslipidemia than in the first quartile, respectively, but only in the LF group. Women in the second quartile of carbohydrate intake showed an 83% higher risk of hypercholesterolemia than in the first quartile in the LF group. On the other hand, as no significant association was observed between the carbohydrate intake and metabolic diseases among the HF groups in both sexes. Conclusion: These findings suggest that a high fiber intake might be associated with a reduced risk of metabolic syndrome and high carbohydrate intake with a low dietary fiber intake might be associated with an increased risk of several metabolic abnormalities among Korean adults. Further prospective studies will be needed to confirm the effects of high fiber and high carbohydrate intake on the cardiometabolic risk factors among Koreans.

Evaluation of the Jaw-Tracking Technique for Volume-Modulated Radiation Therapy in Brain Cancer and Head and Neck Cancer (뇌암 및 두경부암 체적변조방사선치료시 Jaw-Tracking 기법의 선량학적 유용성 평가)

  • Kim, Hee Sung;Moon, Jae Hee;Kim, Koon Joo;Seo, Jung Min;Lee, Joung Jin;Choi, Jae Hoon;Kim, Sung Ki;Jang, In-Gi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.177-183
    • /
    • 2018
  • Purpose : Volumetric Modulated Arc Therapy(VMAT) has the advantage of uniformly and precisely irradiating the tumor to the shape of the tumor while reducing the risk of radiation damage to normal tissues. such as brain cancer, head and neck cancer and prostate cancer, It is being used for treatment. The purpose of this study is to evaluate the usefulness of the Jaw-Tracking technique(JTT) in VMAT for brain and head and neck cancer. Materials and Methods : We selected eight patients with brain and head and neck cancer(4 Brain, 4 head and neck) who were treated with the VMAT treatment technique. Contouring information of the patient's tumor and normal organ was fused to the Rando phantom using the deformable registration of Velocity(Varian, USA). A treatment plan was developed using the Varian Eclipse(ver 15.5, Varian, USA) with the same patient actual beam parameters except for the use of jaw-tracking. As the evaluation index, the maximum dose and mean dose of target and OAR were compared and a portal dosimetry was performed for the treatment plan verification. Results : When using JTT, the relative dose of OAR decreased by 5.24 % and the maximum dose by 7.05 %, respectively, compared with the Static-Jaw technique(SJT). In the various OARs, the mean dose and maximum dose reduction ranges ranged from 0.01 to 3.16 Gy and from 0.12 to 6.27 Gy, respectively. In the case of the target, the maximum dose of GTV, CTV, PTV decreased by 0.17 %, 0.43 %, and 0.37 % in JTT, and the mean dose decreased by 0.24 %, 0.47 % and 0.47 %, respectively. Gamma analysis The JTT and SJT passing rates were $98{\pm}1.73%$ and $97{\pm}1.83%$ on the basis of 3 % / 3 mm, respectively. Comparing the doses of all OARs applied to the experiment, it was found that the use of JTT resulted in a significant decrease in dose due to additional jaw shielding besides MLC than SJT. Conclusion : In radiation therapy using VMAT treatment plan, we can apply JTT in the case of adjacent tumor and normal organs such as brain cancer and head and neck cancer, and in radiotherapy required large field and high energy caused increase leakage dose through MLC. It is considered that the target dose of PTV can be increased by lowering the dose of normal tissue surrounding the tumor.

  • PDF

Comparison of Gene Expression Profile in Eutopic Endometria with or without Endometriosis: A Microarray Study (자궁내막증 환자와 대조군에서의 자궁내막 유전자 발현의 차이: Microarray를 이용한 연구)

  • Chung, Min-Ji;Chung, Eun-Jung;Lee, Shin-Je;Kim, Moon-Kyu;Chun, Sang-Sik;Lee, Taek-Hoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.1
    • /
    • pp.19-31
    • /
    • 2007
  • Objective: Pathogenesis of the endometriosis is very complex and the etiology is still unclear. Our hypothesis is that there may be some difference in gene expression patterns between eutopic endometriums with or without endometriosis. In this study, we analyzed the difference of gene expression profile with cDNA microarray. Methods: Endometrial tissues were gathered from patients with endometriosis or other benign gynecologic diseases. cDNA microarray technique was applied to screen the different gene expression profiles from early and late secretory phase endometria of those two groups. Each three mRNA samples isolated from early and late secretory phase of endometrial tissues of control were pooled and used as master controls and labeled with Cy3-dUTP. Then the differences of gene expression pattern were screened by comparing eutopic endometria with endometriosis, which were labeled with Cy5-dUTP. Fluorescent labeled probes were hybridized on a microarray of 4,800 human genes. Results: Twelve genes were consistently over-expressed in the endometrium of endometriosis such as ATP synthase H transporting F1 (ATP5B), eukaryotic translation elongation factor 1, isocitrate dehydrogenase 1 (NADP+), mitochondrial ribosomal protein L3, ATP synthase H+ transporting (ATP5C1) and TNF alpha factor. Eleven genes were consistently down-regulated in the endometriosis samples. Many extracellular matrix protein genes (decorin, lumican, EGF-containing fibulin-like extracellular matrix protein 1, fibulin 5, and matrix Gla protein) and protease/protease inhibitors (serine proteinase inhibitor, matrix metalloproteinase 2, tissue inhibitor of metalloproteinase 1), and insulin like growth factor II associated protein were included. Expression patterns of selected eight genes from the cDNA microarray were confirmed by quantitative RT-PCR or real time RT-PCR. Conclusion: The result of this analysis supports the hypothesis that the endometrium from patients with endometriosis has distinct gene expression profile from control endometrium without endometriosis.

Development of a deep neural network model to estimate solar radiation using temperature and precipitation (온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발)

  • Kang, DaeGyoon;Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.85-96
    • /
    • 2019
  • Solar radiation is an important variable for estimation of energy balance and water cycle in natural and agricultural ecosystems. A deep neural network (DNN) model has been developed in order to estimate the daily global solar radiation. Temperature and precipitation, which would have wider availability from weather stations than other variables such as sunshine duration, were used as inputs to the DNN model. Five-fold cross-validation was applied to train and test the DNN models. Meteorological data at 15 weather stations were collected for a long term period, e.g., > 30 years in Korea. The DNN model obtained from the cross-validation had relatively small value of RMSE ($3.75MJ\;m^{-2}\;d^{-1}$) for estimates of the daily solar radiation at the weather station in Suwon. The DNN model explained about 68% of variation in observed solar radiation at the Suwon weather station. It was found that the measurements of solar radiation in 1985 and 1998 were considerably low for a small period of time compared with sunshine duration. This suggested that assessment of the quality for the observation data for solar radiation would be needed in further studies. When data for those years were excluded from the data analysis, the DNN model had slightly greater degree of agreement statistics. For example, the values of $R^2$ and RMSE were 0.72 and $3.55MJ\;m^{-2}\;d^{-1}$, respectively. Our results indicate that a DNN would be useful for the development a solar radiation estimation model using temperature and precipitation, which are usually available for downscaled scenario data for future climate conditions. Thus, such a DNN model would be useful for the impact assessment of climate change on crop production where solar radiation is used as a required input variable to a crop model.

Development of Electret to Improve Output and Stability of Triboelectric Nanogenerator (마찰대전 나노발전기의 출력 및 안정성 향상을 위한 일렉트렛 개발)

  • Kam, Dongik;Jang, Sunmin;Yun, Yeongcheol;Bae, Hongeun;Lee, Youngjin;Ra, Yoonsang;Cho, Sumin;Seo, Kyoung Duck;Cha, Kyoung Je;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.93-99
    • /
    • 2022
  • With the rapid development of ultra-small and wearable device technology, continuous electricity supply without spatiotemporal limitations for driving electronic devices is required. Accordingly, Triboelectric nanogenerator (TENG), which utilizes static electricity generated by the contact and separation of two different materials, is being used as a means of effectively harvesting various types of energy dispersed without complex processes and designs due to its simple principle. However, to apply the TENG to real life, it is necessary to increase the electrical output. In addition, stable generation of electrical output, as well as increase in electrical output, is a task to be solved for the commercialization of TENG. In this study, we proposed a method to not only improve the output of TENG but also to stably represent the improved output. This was solved by using the contact layer, which is one of the components of TENG, as an electret for improved output and stability. The utilized electret was manufactured by sequentially performing corona charging-thermal annealing-corona charging on the Fluorinated ethylene propylene (FEP) film. Electric charges artificially injected due to corona charging enter a deep trap through the thermal annealing, so an electret that minimizes charge escape was fabricated and used in TENG. The output performance of the manufactured electret was verified by measuring the voltage output of the TENG in vertical contact separation mode, and the electret treated to the corona charging showed an output voltage 12 times higher than that of the pristine FEP film. The time and humidity stability of the electret was confirmed by measuring the output voltage of the TENG after exposing the electret to a general external environment and extreme humidity environment. In addition, it was shown that it can be applied to real-life by operating the LED by applying an electret to the clap-TENG with the motif of clap.