• Title/Summary/Keyword: 에너지함수

Search Result 1,484, Processing Time 0.024 seconds

Evaluation of Resource Recovery from Sorted Waste by MBT System (MBT시스템에 의해 선별(選別)된 생활폐기물(生活廢棄物)의 자원화(資源化) 평가(評價)에 관(關)한 연구(硏究))

  • Lee, Byung-Sun;Han, Sang-Kuk;Lee, Nam-Hoon;Kang, Jeong-Hee;Wie, June
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.20-28
    • /
    • 2013
  • This study was carried out to evaluate the possibility of resource recovery for municipal solid waste(MSW) that sorted by a MBT system. First, physical property of MSW was similar to wastes carried into Sudokown landfill site. However, moisture of MSW was little higher than that. As a result of BMP test using organic fraction of MSW(OFMSWs), approximately 60 ~ 80 mL $CH_4/g$-VS of methane was occurred. Compared to the other studies, the value of methane is lower. It seems to be caused that high ratio of vinyl/plastic in OFMSWs. The other BMP test using sample of MBT system located in Sudokwon landfill was conducted each physical properties. According to the result of experiment, food waste makes 193 mL $CH_4/g$-VS, and paper is 102 mL $CH_4/g$-VS. However, there was not methane production in vinyl and rubber. Additionally, others that can't sort no more show 30 m $CH_4L/g$-VS of methane production. From the result of experimental data OFMSWs has high fraction of vinyl, rubber and other substance that difficult for biodegradation. Therefore it is need to sort of them.

Density Functional Study on Correlation between Magnetism and Crystal Structure of Fe-Al Transition Metal Compounds (Fe-Al 전이금속 화합물의 자성과 결정구조의 상관관계에 대한 밀도범함수연구)

  • Yun, Won-Seok;Kim, In-Gee
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.43-47
    • /
    • 2011
  • It is known that the Fe-Al transition metal compounds have a lot of disagreement about structural stability and magnetism. In this study, the correlation between magnetism and atomic structure of ordered $B_2$, $L1_2$, and $D0_3$ structured Fe-Al compounds has been investigated using the all-electron full-potential linearized augmented plane wave (FLAPW) method based on the generalized gradient approximation (GGA). We found that considered all the structures were calculated to be stabilized in a ferromagnetic state. The calculated spin magnetic moments of the Fe atoms for B2 and $L1_2$ structures were 0.771 and 2.373 ${\mu}_B$, respectively, and that of Fe(I) and Fe(II) in $D0_3$ structure calculated to be 2.409 ${\mu}_B$, 1.911 ${\mu}_B$, respectively. In order to investigate structural stability between $L1_2$ and $D0_3$ structures, we performed the formation enthalpy calculations. As a result, the $D0_3$ structure is found to be more favorable than $L1_2 one by energy difference 16 meV/atom, which is well consistent with the experimental observation. We understood about structural stability and magnetism for Fe-Al compounds in terms of analysis of their atomic and electronic structures.

Determination of Reactivities by Molecular Orbital Theory (VI). Sigma MO Treatment on $C_6H_5YCH_2Cl$ (화학반응성의 분자궤도론적 연구 (제 6 보). $C_6H_5YCH_2Cl$ 형 화합물의 시그마분자궤도론적 고찰)

  • Lee, Ikc-Hoon;Lee, Bon-Su;Lee, Jae-Eui
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.85-96
    • /
    • 1974
  • Extended H ckel Theory and CNDO/2 MO calculation methods have been applied to $C_6H_5YCH_2Cl$(Y = None, -$CH_2$-, -O-, -S-, -CO-, -$SO_2$-). It has been shown that charge distributions in molecules are mainly controlled by the migration of valence inactive electron, giving the order of ${\sigma}$-acceptor and ${\pi}$-donor effects -O- > -S- > -$CH_2$- > -$SO_2$-. The -CO- group exceptionally acts as ${\sigma}$-donor and ${\pi}$-acceptor. It was also predicted that, $S_N2$ reactivities of C$C_6H_5YCH_2Cl$ would be in the order of -O-${\thickapprox}$-CO- >>-S-${\thickapprox}$None > -$CH_2$-, neglecting solvent effect. From the results of our studies, we conclude that the structural factors influencing 의 $S_N$ reactivities will be: (1) positive charge developments on reaction center carbon atom (2) energy level of ${\sigma}$-antibonding unoccupied MO with respect to C-Cl bond. (3) ${\sigma}$-antibonding strength of C-Cl bond at that level.

  • PDF

Electrical Conductivity of $(ZrO_2)_x-(Tm_2O_3)_y$ System ($(ZrO_2)_x-(Tm_2O_3)_y$계의 전기전도도)

  • Eun Kyung Cho;Won Yang Chung;Keu Hong Kim;Seung Koo Cho;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.498-502
    • /
    • 1987
  • Electrical conductivities of $(ZrO_2)_x-(Tm_2O_3)_y$ systems containing 1, 3 and 5mol% of $ZrO_2$ have been measured as a function of temperature and of oxygen partial pressure at temperatures from 600 to 1,100$^{\circ}$C and oxygen partial pressures from $10^{-5}$ to $2{\times}10^{-1}atm$. Plots of log conductivity vs. 1/T are found to be linear and average activation energy is 1.51 eV. The electrical conductivity dependences on PO$_2$ are different at two temperature regions, indicating ${\sigma}{\alpha}PO_2^{1/5.3}$ and ${\sigma}{\alpha}PO_2^{1/10.7}$ at high-and low-temperature regions, respectively. The defect of $(ZrO_2)_x-(Tm_2O_3)_y$ system is $V_{Tm}^{'''}$ and an electron hole is suggested as a carrier at high temperature region. At low temperature region, a mixed ionic and hole conduction is reasonable.

  • PDF

Numerical Analysis of Nonlinear Shoaling Characteristics over Surf Zone Using SPH and Lagrangian Dynamic Smagronsky Model (Lagrangian Dynamic Smagronsky 난류모형과 SPH를 이용한 쇄파역에서의 비선형 천수거동에 관한 연구)

  • Cho, Yong-Jun;Lee, Heon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.81-96
    • /
    • 2007
  • Nonlinear shoaling characteristics over surf zone are numerically investigated based on spatially averaged NavierStokes equation. We also test the validity of gradient model for turbulent stresses due to wave breaking using the data acquainted during SUPERTANK LABORATORY DATA COLLECTION PROJECT(Krauss et al., 1992). It turns out that the characteristics length scale of breaking induced current is not negligible, which firmly stands against ever popular gradient model, ${\kappa}-{\varepsilon}$ model, but favors Large Eddy Simulation with finer grid. Based on these observations, we model the residual stress of spatially averaged NavierStokes equation after Lagrangian Dynamic Smagorinsky(Meneveau et al., 1996). We numerically integrate newly proposed wave equations using SPH with Gaussian kernel function. Severely deformed water surface profile, free falling water particle, queuing splash after landing of water particle on the free surface and wave finger due to structured vortex on rear side of wave crest(Narayanaswamy and Dalrymple, 2002) are successfully duplicated in the numerical simulation of wave propagation over uniform slope beach, which so far have been regarded very difficult features to mimic in the computational fluid mechanics.

State-of-Arts of Primary Concrete Degradation Behaviors due to High Temperature and Radiation in Spent Fuel Dry Storage (사용후핵연료 건식저장 콘크리트의 고열과 방사선으로 인한 주요 열화거동 분석)

  • Kim, Jin-Seop;Kook, Donghak;Choi, Jong-Won;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • A literature review on the effects of high temperature and radiation on radiation shielding concrete in Spent Fuel Dry Storage is presented in this study with a focus on concrete degradation. The general threshold is $95^{\circ}C$ for preventing long-term degradation from high temperature, and it is suggested that the temperature gradient should be less than $60^{\circ}C$ to avoid crack generation in concrete structures. The amount of damage depends on the characteristics of the concrete mixture, and increases with the temperature and exposure time. The tensile strength of concrete is more susceptible than the compressive strength to degradation due to high temperature. Nuclear heating from radiation can be neglected under an incident energy flux density of $10^{10}MeV{\cdot}cm^{-2}{\cdot}s^{-1}$. Neutron radiation of >$10^{19}n{\cdot}cm^{-2}$ or an integrated dose of gamma radiation exceeding $10^{10}$ rads can cause a reduction in the compressive and tensile strengths and the elastic moduli. When concrete is highly irradiated, changes in the mechanical properties are primarily caused by variation in water content resulting from high temperature, volume expansion, and crack generation. It is necessary to fully utilize previous research for effective technology development and licensing of a Korean dry storage system. This study can serve as important baseline data for developing domestic technology with regard to concrete casks of an SF (Spent Fuel) dry storage system.

On the Decomposition of Dimethyl-2, 2-dichlorovinylphosphate (Dimethyl-2, 2-dichlorovinylphosphate의 분해반응에 관한 연구)

  • Sung, Nack-Do;Park, Seung-Heui
    • Applied Biological Chemistry
    • /
    • v.26 no.2
    • /
    • pp.125-131
    • /
    • 1983
  • Formal net charges, bond populations, atomic orbital coefficients, energy components and conformation of dimethyl-2,2-dichlorovinylphosphate have been studied theoretically by using the CNDO/2 molecular orbital calculation method in attempt to describe the reactivity and the stability of the molecule. From the analysis of rate equation, molecular orbital calculations and identification of the hydrolysis products, 2,2-dichloroacetaldehyde and dimethylphosphoric acid, a mechanism of the hydrolysis of dimethyl-2,2-dichlorovinylphosphate(DDVP) has been proposed. The hydrolysis of DDVP proceeds through the mechanism of nucleophilic addition, typical Micheal reaction in basic media. Therefore, it appears probable that the attack by strong nucleophile, hydroxide ion occurs at the increased positive charge $C_2({\alpha})$ atom of a staggered conformation due to the inductive effect (-)I>(+)R of 2,2-dichlorovinyl, electron-attracting group. And then, the hydrolytic scission involves the $C_2({\alpha})-O_3$, ${\pi}-anti-bonding\;orbital({\pi}^*)$ in the subsequent reaction in aqueous solution.

  • PDF

Unsteady Free Convection Flow in Horizontal Channels with Arbitrary Wall Temperatures (임의의 벽면온도에 따른 수평채널에서의 비정상 자연대류운동)

  • Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 1997
  • Energy transfer by free convection arises in many engineering applications, such as a hot steam radiator for heating a room, refrigeration coils, electric transformers, heating elements and electronic equipments. Generally unsteady natural convection flow in a horizontal channel with arbitrary wall temperatures and the mathematical and physical basis of convection transport has been considered in general. A physically meaningful exact solution of the problem has been obtained in a closed form by the application of the standard finite sine transform technique. Influences of the governing parameters, the Prandtl number and the Rayleigh number, to bring the flow and heat transfer to final steady states have been discussed separately. For constant values of the arbitray wall temperatures and of the function, determining the average axial velocity, the final steady state is approached in different times respectively for the cases when the Prandtl number Pr>1 and Pr<1. It is also seen that the function, representing the axial temperature gradient, is influenced by none of the governing parameters : but the steady state flow is influenced only by the Rayleigh number. There are, of course, many applications. Free convection strongly influences heat transfer from pipes and transmission lines, as well as from various electronic devices. It is also relevant to the environmental sciences, where it is responsible for oceanic and atmospheric motions, as well as related heat transfer processes.

  • PDF

Analysis of Factors Affecting the Hygroscopic Performance of Thermally Treated Pinus koraiensis Wood (잣나무열처리재의 흡방습성능에 미치는 영향인자 분석)

  • Chang, Yoon-Seong;Han, Yeon-Jung;Eom, Chang-Deuk;Park, Joo-Saeng;Park, Moon-Jae;Choi, In-Gyu;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.10-18
    • /
    • 2012
  • A high airtightness is required for the residential spaces constructed recently to save cooling and heating energy through improving insulation performance. Because the chances to release steam formed by human activity in building and inflow of water vapor in outdoor air to residential space are reduced, the natural humidity control performance of interior materials has become more important. In this study, hygroscopic performance of thermo-physically treated wood (Pinus koraiensis) was estimated. At various relative humidity condition, the water vapor adsorption and desorption rates of wooden materials were measured as well as equilibrium moisture content. Effects of roughness and surface microstructure as physical factors and functional groups as chemical factors on the hygroscopicity were analyzed. It is expected that the results from this study and further study of measuring moisture generation in residential spaces could contribute to install a system for evaluating the hygrothermal performance of wooden building.

Adsorption Characteristics of Carbon Dioxide on Chitosan/Zeolite Composites (키토산/제올라이트 복합체의 이산화탄소 흡착 특성)

  • Hong, Woong-Gil;Hwang, Kyung-Jun;Jeong, Gyeong-Won;Yoon, Soon-Do;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • In this study, chitosan/zeolite composites were prepared by using basalt-based zeolite impregnated with aqueous chitosan solution for the adsorptive separation of CO2. The prepared composites were characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption analysis. In addition, the adsorption equilibrium isotherms for CO2 and N2 were measured at 298 K using a volumetric adsorption system, and the results were analyzed by applying adsorption isotherm equations (Langmuir, Freundlich, and Sips) and energy distribution function. It was found that CO2 adsorption capacities were well correlated with the structural characteristics of chitosan and zeolite, and the ratio of elements [N/C, Al/(Si + Al)] formed on the surface of the composite. Moreover, the CO2/N2 adsorption selectivity was calculated under the mixture conditions of 15 V : 85 V, 50 V : 50 V, and 85 V : 15 V using the Langmuir equation and the ideal adsorption solution theory (IAST).