• Title/Summary/Keyword: 에너지소비효율,질소산화물

Search Result 4, Processing Time 0.017 seconds

Characteristics of Emission and Fuel Economy of Fuel Additives in the Domestic Market (국내 유통 첨가제의 배출가스 및 연비특성)

  • Kim, Sungwoo;Lee, Minho;Lee, Jeongmin;Kim, JaiGueon;Jung, Choongsub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.165.1-165.1
    • /
    • 2010
  • In the past, drivers bought a fuel additives to treat a combustion chambers or injector nozzles for carbon or gum deposit at market. But, nowadays, as raised cost of fuel for a vehicle the consumers also start focusing on a function of fuel additives that increases fuel economy of one. Some fuel additive manufacturers and agents advertise that their goods make a car it's initial state. This paper shows data for 3 years that were acquired during test for registration of an additive in domestic. The data were sorted according to kind of vehicle, kind of fuel, test mode, CO, HC, NOx, PM, total emission, fuel economy and accumulated mileage. And than by using simple linear regression analysis changes according to accumulated mileage was displayed. Normal distribution and histogram of rate of increase and decrease were displayed. the analyzed data indicated that a fuel additive maintain and make a car the first state of one but can't make a car be batter than initial the one.

  • PDF

A Study on the Comparison of Emissions and Fuel Efficiency Performance of 2.0 Liter LPG Hybrid Engine and Vehicle (2.0 리터급 LPG 하이브리드 엔진 및 차량의 배출가스 및 연비성능 비교에 관한 연구)

  • Seokjoo Kwon;Bonseok Koo;Jaehoon Kang;Kangmyeon Kim;Sedoo Oh;Youngho Seo
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.191-197
    • /
    • 2023
  • LPG direct injection (LPDi) technology is a method of improving the weaknesses of existing LPG vehicles by directly injection into the combustion chamber. This study was conducted on the comparison of emissions and fuel efficiency performance of the engine and vehicle by applying LPDi technology. The LPDi hybrid engine's maximum output and maximum torque were measured at an equivalent level of less than 1% compared to conventional gasoline fuel. The fuel amount was corrected using the LCU controller, and the THC, CO, and NOx emissions were reduced to 90% in the operating range of the three-way catalyst through air-fuel ratio control. The analysis of THC+NOx and CO emissions in FTP-75 (CVS-75) driving mode satisfied the US LEV III SULEV30 regulation.

An Experimental Study on Combustion and Emission Characteristics of a CI Diesel Engine Fueled with Pentanol/Diesel Blends (압축착화 디젤엔진에서 펜탄올/경유 혼합유의 연소 및 배기 특성에 관한 실험적 연구)

  • JAESUNG KWON;BEOMSOO KIM;JEONGHYEON YANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.97-104
    • /
    • 2024
  • In this study, combustion experiments were conducted to assess engine performance and exhaust gas characteristics using four blends of 1-pentanol and diesel as fuel in a naturally aspirated 4-stroke diesel engine. The blending ratios of 1-pentanol were 5, 10, 15, and 20% by volume. The experiments were carried out under four different engine torque conditions (6, 8, 10, and 12 Nm) while maintaining a constant engine speed of 2,000 rpm for all fuel types. The results showed that the use of 1-pentanol/diesel blended fuel generally led to a decrease in brake thermal efficiency, attributed to the low calorific value of the blend and the cooling effect due to the latent heat of vaporization. Additionally, both brake specific energy consumption and brake specific fuel consumption increased. However, the use of the blended fuel resulted in a general decrease in NOx concentration, a decrease in CO concentration except some conditions, and a reduction in smoke opacity across all conditions.

Study on the Co-firing of Sewage Sludge to a 80 kWth-scale Pulverized Coal Combustion System (80 kWth급 미분탄 연소 시스템에서 하수슬러지 혼소시 연소 특성 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • Thermochemical treatment of sewage sludge is an energy-intensive process due to its high moisture content. To save the energy consumed during the process, the hydrothermal carbonization process for sewage sludge can be used to convert sewage sludge into clean solid fuel without pre-drying. This study is aimed to investigate co-firing characteristics of the hydrothermally carbonated sewage sludge (HCS) to a pulverized coal combustion system. The purpose of the measurement is to measure the pollutants produced during co-firing and combustion efficiency. The combustion system used in this study is a furnace with a down-firing swirl burner of a $80kW_{th}$ thermal input. Two sub-bituminous coals were used as a main fuel, and co-firing ratio of the sewage sludge was varied from 0% to 10% in a thermal basis. Experimental results show that $NO_x$ is 400 ~ 600 ppm, $SO_x$ is 600 ~ 700 ppm, and CO is less than 100 ppm. Experimental results show that stable combustion was achieved for high co-firing ratio of the HCS. Emission of $NO_x$ and $SO_x$ was decreased for higher co-firing ratio in spite of the higher nitrogen contents in the HCS. In addition, it was found that the pollutant emission is affected significantly by composition of the main fuel, regardless of the co-firing ratios.