Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.17-19
/
2021
본 논문에서는 코로나19 사태에 대비하여 실시간으로 마스크를 제대로 쓴 사람과 제대로 쓰지 않은 사람을 구분하는 시스템을 제안한다. 이 시스템을 사용하기 위하여 모델 학습 시에 합성곱 신경망(CNN : Convolutional Neural Networks)를 사용한다. 학습된 모델을 토대로 영상에 적용 시 하르 특징 분류기(Haar Cascade Classifier)로 얼굴을 탐지하여 마스크 여부를 판단한다.
Recent deep learning-based face synthesis research shows the result of generating a realistic face including overall style or elements such as hair, glasses, and makeup. However, previous methods cannot create a face at a very detailed level, such as the microstructure of the skin. In this paper, to overcome this limitation, we propose a technique for synthesizing a more realistic facial image from a single face label image by controlling the types and intensity of skin microelements. The proposed technique uses Pix2PixHD, an Image-to-Image Translation method, to convert a label image showing the facial region and skin elements such as wrinkles, pores, and redness to create a facial image with added microelements. Experimental results show that it is possible to create various realistic face images reflecting fine skin elements corresponding to this by generating various label images with adjusted skin element regions.
Proceedings of the Korea Multimedia Society Conference
/
2003.11a
/
pp.232-235
/
2003
본 눈문에서는 표면의 에지를 잘 나타내는 웨이블릿을 이용한 3차원 얼굴 인식 알고리듬을 제안한다. 먼저 얼굴영역을 추출하고 정규화과정을 수행한다. 코는 얼굴에서 가장 높고 기준점의 역할을 하므로 반복 선택방법을 이용해서 코끝을 찾는다. 코끝 최고점을 기준으로 깊이값 20, 30, 40인 영역에 대해 웨이블릿 변환을 수행하여 얼굴마다 저주파와 고주파들을 생성하는데, 저주파를 제외한 고주파들에 대하여 히스토그램을 특징벡터로 사용하였다 유사도의 비교는 L$_1$거리함수를 사용하여 수평, 수직, 대각고주파, 그리고 이 고주파들의 유사도 비교치를 합한 합성의 경우 각각에 대하여 실험하였다. 깊이값에 따른 영역에서 고주파별로 실험한 결과, 순위 임계값이 10위를 기준으로 깊이값 30 대각고주파에서 91%가 나타났고 합성에서는 93%의 인식률이 나왔다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.835-837
/
2005
최근 얼굴 인식은 사용자의 편의성을 포함한 다양한 장점으로 인하여 생체 인식 시장에서 주요 기술로 대두되고 있다. 그러나 조명 변화에 기인한 얼굴 인식 성능의 저하는 실용화에 걸림돌이 되고 있는 실정이다. 따라서 조명 변화에 따른 얼굴의 외형 변화를 분석하는 연구들이 세계적으로 활발히 진행되고 있다. 그러나 기존 방법들은 다수의 등록 영상이나 조명에 대한 사전 정보가 필요하거나 실시간으로 구현되기 어렵기 때문에 실용 시스템에 적용하기는 어려운 실정이다. 따라서, 본 논문에서는, 여러 조명 영상들로 구성된 학습 데이터를 이용하여, 조명에 대한 정보가 없는 한 장의 입력 영상을 분석하는 방법을 제안한다. 제안된 방법은 SVDD를 이용하여 학습 데이터의 여러 조면 영상들로부터 입력 영상의 조명과 같은 대표영상을 합성하고 이 대표영상들의 선형 조합을 이용하여 입력 영상을 표현한다. 제안 방법의 효율성을 검증하기 위하여 공인 얼굴 데이터베이스들을 이용하여, 기존 방법들과 비교 실험을 수행하였으며, 조명 변화가 큰 영상에서도 안정된 조명 변화의 분석이 가능하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.1222-1225
/
2022
본 논문에서는 저조도 환경에서 촬영된 영상의 조도를 개선하여 얼굴 검증 정확도를 높이는 방법을 제안하였다. 입력 이미지의 조도 개선을 통해 얼굴 검출 정확도를 개선하며, 검출된 얼굴의 반복적인 조도 향상을 통해 생성된 다수의 특징 벡터를 이용하여 얼굴 검증에 이용하였다. 얼굴 검출 및 검증 정확도 측정을 위해 K-FACE 데이터셋을 이용하였다. 저조도 환경에서 촬영된 검증 이미지에 대하여, 제안하는 특징 벡터 합성 방법으로 인해, 동일인 쌍 및 타인 쌍의 유사도 점수 분포의 표준 편차가 줄어드는 경향을 확인했으며, 이로 인해 검증 성능이 높아지는 결과를 얻었다.
In this paper, knowledge based text to facial sequence image system for interaction of lecturer and learner in cyber universities is studied. The system is defined by the synthesis of facial sequence image which is synchronized the lip according to the text information based on grammatical characteristic of hangul. For the implementation of the system, the transformation method that the text information is transformed into the phoneme code, the deformation rules of mouse shape which can be changed according to the code of phonemes, and the synthesis method of facial sequence image by using deformation rules of mouse shape are proposed. In the proposed method, all syllables of hangul are represented 10 principal mouse shape and 78 compound mouse shape according to the pronunciation characteristics of the basic consonants and vowels, and the characteristics of the articulation rules, respectively. To synthesize the real time facial sequence image able to realize the PC, the 88 mouth shape stored data base are used without the synthesis of mouse shape in each frame. To verify the validity of the proposed method the various synthesis of facial sequence image transformed from the text information is accomplished, and the system that can be applied the PC is implemented using the proposed method.
최근 생체 정보를 이용한 사용자 인증 기술이 발전하면서 이를 모바일 기기에 적용하는 사례가 크게 증가하고 있다. 특히, 얼굴 기반 인증 방식은 비접촉식이며 사용이 편리하여 적용 범위가 점점 확대되고 있는 추세이다. 그러나, 사용자의 얼굴 사진이나 동영상 등을 이용한 위변조가 용이하기 때문에 모바일 기기 내 보안 유지에 어려움을 야기한다. 본 고에서는 이러한 문제를 해결하기 위해 최근 활발히 연구되고 있는 심층신경망 기반 얼굴 위변조 검출 연구의 최신 동향을 소개하고자 한다. 먼저, 기본 합성곱 신경망 구조부터 생성모델 기반의 위변조 검출 방법까지 다양한 신경망 구조를 이용한 위변조 검출 방법에 대해 설명한다. 또한, 심층신경망 학습을 위해 사용되는 얼굴 위변조 데이터셋에 대해서도 간략히 살펴보고자 한다.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.1
/
pp.75-80
/
2021
Artificial intelligence is becoming an important part of our lives providing incredible benefits. In this respect, facial expression recognition has been one of the hot topics among computer vision researchers in recent decades. Classifying small dataset of low resolution images requires the development of a new small scale deep CNN model. To do this, we propose a method suitable for small datasets. Compared to the traditional deep CNN models, this model uses only a fraction of the memory in terms of total learnable weights, but it shows very similar results for the FER2013 and FERPlus datasets.
In this paper, we investigated the affective components of facial beauty. In study 1, we did factor analysis of affective evaluations of the faces, and about 65% of the variances are explained by only two factors. Two factors were named 'sharp' and 'soft', respectively. In study 2, the correlation between facial beauty and affective evaluations was analyzed, and the correlation between facial beauty and sharp factor was significant. In study 3, we made the new images by morphing and warping the faces: 'average', 'high-ranked', and 'exaggerated'. The participants evaluated the 'high-ranked' face more beautiful than the 'average' face, and the 'exaggerated' face more beautiful than the 'high-ranked' face. The rating of affective words on the faces showed that the 'average' face was related to 'soft' impression, the 'high-ranked' image to 'sharp' impression, and the 'exaggerated' face might have double impression. These results might support the directional hypothesis for the facial beauty.
The Journal of Korean Institute of Communications and Information Sciences
/
v.18
no.7
/
pp.913-921
/
1993
Texture mapping is mostly used as an image synthesis method in the model-based coding system. An image synthesis using this method uses only the texture information of a front face-view. Therefore, when the model is rotated, texture mapping may produce an awkward image in point of shading. In this paper. a new texture mapping method considering shading effect is studied, and also the ear's wireframe and changes of hair are suplemented for the relation. The experimental results show that the proposed method yields the synthesized images with reasonably natural quality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.