컴퓨터 하드웨어 기술과 멀티미디어 기술의 발달로 멀티미디어 입출력 장치를 이용한 고급 인터메이스의 필요성이 대두되었다. 친근감 있는 사용자 인터페이스를 제공하기 위해 실감 있는 얼굴 애니메이션에 대한 요구가 증대되고 있다. 본 논문에서는 사람의 내적 상태를 잘 표현하는 얼굴의 표정을 3차원 모델을 이용하여 애니메이션을 수행한다. 애니메이션에 실재감을 더하기 위해 실제 얼굴 영상을 사용하여 3차원의 얼굴 모델을 변형하고, 여러 방향에서 얻은 얼굴 영상을 이용하여 텍스터 매핑을 한다. 변형된 3차원 모델을 이용하여 얼굴 표정을 애니메이션 하기 위해서 해부학에 기반한 Waters의 근육 모델을 수정하여 사용한다. 그리고, Ekman이 제안한 대표적인 6가지 표정들을 합성한다.
In this paper, we suggest the method of 3D facial synthesis using the motion of 2D facial images. We use the optical flow-based method for estimation of motion. We extract parameterized motion vectors using optical flow between two adjacent image sequences in order to estimate the facial features and the facial motion in 2D image sequences. Then, we combine parameters of the parameterized motion vectors and estimate facial motion information. We use the parameterized vector model according to the facial features. Our motion vector models are eye area, lip-eyebrow area, and face area. Combining 2D facial motion information with 3D facial model action unit, we synthesize the 3D facial model.
This paper presents a method that estimates face pose for a given face image and synthesizes any posed face images using Active Appearance Model(AAM). The AAM that having been successfully applied to various applications is an example-based learning model and learns the variations of training examples. However, with a single model, it is difficult to handle large pose variations of face images. This paper proposes to build a model covering only a small range of angle for each pose. Then, with a proper model for a given face image, we can achieve accurate pose estimation and synthesis. In case of the model used for pose estimation was not trained with the angle to synthesize, we solve this problem by training the linear relationship between the models in advance. In the experiments on Yale B public face database, we present the accurate pose estimation and pose synthesis results. For our face database having large pose variations, we demonstrate successful frontal pose synthesis results.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.499-501
/
2001
본 논문에서는 사실적인 아바타(avata) 구현의 핵심이라 할 수 있는 입체적인 얼굴 표현을 위해, (※원문참조) 기하학적인 정보를 사용하지 않고 중첩 메쉬를 허용하는 개선된 메쉬 워프 알고리즘(mesh warp algor※원문참조)을 이용하여 IBR(Image Based Rendering)을 구현하는 방법을 제안한다. 3차원 모델을 대신하기 위해 (※원문참조) 인물의 정면, 좌우 반측면, 좌우 측면의 얼굴 영상들에 대해 작성된 메쉬를 사용한다. 합성하고자 하는 (※원문참조) 정면 얼굴 영상에 대해서는 정면 메쉬만을 작성하고, 반측면이나 측면 메쉬는 표준 메쉬를 근거로 자(※원문참조)된다. 얼굴 포즈 합성의 성능을 펴가하기 위해, 얼굴을 수평으로 회전하는 실제 포즈 영상과 합성된 포(※원문참조)에 대해 주요 특징점 들을 정규화 한 위치 오차를 측정한 결과, 평균적으로 양 눈의 중심에서 입의 (※원문참조)리에 대해 약 5%의 위치 오차만이 발생한 것으로 나타났다.
Journal of Korea Society of Industrial Information Systems
/
v.23
no.5
/
pp.9-17
/
2018
Recently, the increasing interest of biometric systems has led to the creation of many researches of biometrics forgery. In order to solve this forgery problem, this paper proposes a method of determining whether a synthesized face made of artificaial intelligence is real face or fake face. The proposed algorithm consists of two steps. Firstly, we create the fake face images using various GAN (Generative Adversarial Networks) algorithms. After that, deep learning algorithm can classify the real face image and the generated face image. The experimental results shows that the proposed algorithm can detect the fake face image which looks like the real face. Also, we obtained the classification accuracy of 88.7%.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.12a
/
pp.117-120
/
2000
본 논문에서는 2매의 2차원 얼굴영상으로부터 이들을 합성하여 3차원 얼굴의 가상형상을 복원한다. 여기서 2매의 2차원 얼굴영상은 정면과 측면 영상을 사용한다. 우선 임의의 일반 얼굴에 대한 기준모델을 설정하고, 이 모델에서, 얼굴형상의 특징을 표현하는 귀, 2개의 눈, 코 및 입 부분에 집중적으로 특징점을 규정하고, 그 외에 이마 및 턱 부분에도 특징 점을 규정하여 그 위치좌표를 저장해 둔다. 그 후 정면영상의 좌 우측에 측면영상을 대칭적으로 접속하고 영상의 기하변환 방법을 적용하여 점차적으로 합성한다. 이때 나타나는 합성부분에 색상 및 명도의 차를 제거하기 위해 선형보간법을 적용하여 자연스런 3차원 가상얼굴을 구현하게 된다. 그 결과 불특정 얼굴형상도 3차원으로 구현할 수 있음을 확인하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.8
/
pp.1136-1141
/
2022
Researches of face recognition on masked faces have been increasingly important due to the COVID-19 pandemic. To realize a stable and practical recognition performance, large amount of facial image data should be acquired for the purpose of training. However, it is difficult for the researchers to obtain masked face images for each human subject. This paper proposes a novel method to synthesize a face image and a virtual mask pattern. In this method, a pair of masked face image and unmasked face image, that are from a single human subject, is fed into a convolutional autoencoder as training data. This allows learning the geometric relationship between face and mask. In the inference step, for a unseen face image, the learned convolutional autoencoder generates a synthetic face image with a mask pattern. The proposed method is able to rapidly generate realistic masked face images. Also, it could be practical when compared to methods which rely on facial feature point detection.
This paper proposes avatar face generation system that uses shading mechanism and facial features extraction method of facial recognition. Proposed system generates avatar face similar to human face automatically using facial features that extracted from a photo. And proposed system is an approach which compose shade and facial features. Thus, it has advantages that can make more realistic avatar face similar to human face. This paper proposes new eye localization method, facial features extraction method, classification method for minimizing retrieval time, image retrieval method by similarity measure, and realistic avatar face generation method by mapping facial features with shaded face pane.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.600-602
/
1998
본 논문은 정면과 측면 얼굴 이미지의 특성을 살린 3차원 개인 아바타 합성에 관한 연구이다. 표준 얼굴 메쉬를 얼굴 이미지의 특징점에 맞추려는 힘을 특징점 이외의 점들까지의 거리에 대한 가우스 분포를 따라 부드럽게 전달시켜 매쉬를 탄성있게 변형하는 힘으로 작용시켜 메쉬를 얼굴 이미지의 윤곽선을 중심으로 매칭시키고, 매칭된 메쉬가 매칭 이전의 메쉬의 기하학적 특성을 유지할 수 있도록 메쉬에 동적 피부 모델을 적용한다. 이렇게 생성한 3차원 메쉬에 이미지를 텍스춰 매핑하여 개인 특성을 살린 3차원 개인 아바타를 생성한다.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.408-410
/
1998
동영상에서 얼굴의 움직임을 이해하는 것은 인간과 컴퓨터간의 상호작용을 이루는 분야에서 중요한 문제이다. 본 논문에서는 2차원 동영상에서 얼굴요소 및 얼굴의 움직임을 측정하기 위해 optical flow를 통해 매개변수화된 움직임 벡터를 추출한다. 그리고 나서, 이를 소수의 매개변수들의 조합으로 만들어 얼굴의 움직임에 대한 정보를 묘사할 수 있게 하였다. 매개변수화된 움직임 벡터는 얼굴 및 얼굴 요소의 특징에 따라 다른 벡터 모델을 사용한다. 2차원 동영상에서 매개변수화된 움직임 벡터는 매 프레임마다 갱신되어 각 프레임에서 얼굴 및 얼굴 요소의 위치를 파악한다. 또한, 갱신된 벡터의 매개변수 조합으로 만들어 확인된 움직임에 대한 정보가 3차원 얼굴모델에 전달되며 3차원 얼굴 모델의 단위행위(Action Unit)와 연결되어 2차원 동영상에서의 얼굴 움직임을 합성할 수 있게 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.