• Title/Summary/Keyword: 얼굴 합성

Search Result 140, Processing Time 0.019 seconds

Realistics Facial Expression Animation and 3D Face Synthesis (실감 있는 얼굴 표정 애니메이션 및 3차원 얼굴 합성)

  • 한태우;이주호;양현승
    • Science of Emotion and Sensibility
    • /
    • v.1 no.1
    • /
    • pp.25-31
    • /
    • 1998
  • 컴퓨터 하드웨어 기술과 멀티미디어 기술의 발달로 멀티미디어 입출력 장치를 이용한 고급 인터메이스의 필요성이 대두되었다. 친근감 있는 사용자 인터페이스를 제공하기 위해 실감 있는 얼굴 애니메이션에 대한 요구가 증대되고 있다. 본 논문에서는 사람의 내적 상태를 잘 표현하는 얼굴의 표정을 3차원 모델을 이용하여 애니메이션을 수행한다. 애니메이션에 실재감을 더하기 위해 실제 얼굴 영상을 사용하여 3차원의 얼굴 모델을 변형하고, 여러 방향에서 얻은 얼굴 영상을 이용하여 텍스터 매핑을 한다. 변형된 3차원 모델을 이용하여 얼굴 표정을 애니메이션 하기 위해서 해부학에 기반한 Waters의 근육 모델을 수정하여 사용한다. 그리고, Ekman이 제안한 대표적인 6가지 표정들을 합성한다.

  • PDF

3D Facial Synthesis and Animation for Facial Motion Estimation (얼굴의 움직임 추적에 따른 3차원 얼굴 합성 및 애니메이션)

  • Park, Do-Young;Shim, Youn-Sook;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.618-631
    • /
    • 2000
  • In this paper, we suggest the method of 3D facial synthesis using the motion of 2D facial images. We use the optical flow-based method for estimation of motion. We extract parameterized motion vectors using optical flow between two adjacent image sequences in order to estimate the facial features and the facial motion in 2D image sequences. Then, we combine parameters of the parameterized motion vectors and estimate facial motion information. We use the parameterized vector model according to the facial features. Our motion vector models are eye area, lip-eyebrow area, and face area. Combining 2D facial motion information with 3D facial model action unit, we synthesize the 3D facial model.

  • PDF

Accurate Face Pose Estimation and Synthesis Using Linear Transform Among Face Models (얼굴 모델간 선형변환을 이용한 정밀한 얼굴 포즈추정 및 포즈합성)

  • Suvdaa, B.;Ko, J.
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.508-515
    • /
    • 2012
  • This paper presents a method that estimates face pose for a given face image and synthesizes any posed face images using Active Appearance Model(AAM). The AAM that having been successfully applied to various applications is an example-based learning model and learns the variations of training examples. However, with a single model, it is difficult to handle large pose variations of face images. This paper proposes to build a model covering only a small range of angle for each pose. Then, with a proper model for a given face image, we can achieve accurate pose estimation and synthesis. In case of the model used for pose estimation was not trained with the angle to synthesize, we solve this problem by training the linear relationship between the models in advance. In the experiments on Yale B public face database, we present the accurate pose estimation and pose synthesis results. For our face database having large pose variations, we demonstrate successful frontal pose synthesis results.

A Study on the Synthesis of Facial Poses based on Warping (워핑 기법에 의한 얼굴의 포즈 합성에 관한 연구)

  • 오승택;서준원;전병환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.499-501
    • /
    • 2001
  • 본 논문에서는 사실적인 아바타(avata) 구현의 핵심이라 할 수 있는 입체적인 얼굴 표현을 위해, (※원문참조) 기하학적인 정보를 사용하지 않고 중첩 메쉬를 허용하는 개선된 메쉬 워프 알고리즘(mesh warp algor※원문참조)을 이용하여 IBR(Image Based Rendering)을 구현하는 방법을 제안한다. 3차원 모델을 대신하기 위해 (※원문참조) 인물의 정면, 좌우 반측면, 좌우 측면의 얼굴 영상들에 대해 작성된 메쉬를 사용한다. 합성하고자 하는 (※원문참조) 정면 얼굴 영상에 대해서는 정면 메쉬만을 작성하고, 반측면이나 측면 메쉬는 표준 메쉬를 근거로 자(※원문참조)된다. 얼굴 포즈 합성의 성능을 펴가하기 위해, 얼굴을 수평으로 회전하는 실제 포즈 영상과 합성된 포(※원문참조)에 대해 주요 특징점 들을 정규화 한 위치 오차를 측정한 결과, 평균적으로 양 눈의 중심에서 입의 (※원문참조)리에 대해 약 5%의 위치 오차만이 발생한 것으로 나타났다.

  • PDF

Deep Learning Based Fake Face Detection (딥 러닝 기반의 가짜 얼굴 검출)

  • Kim, DaeHee;Choi, SeungWan;Kwak, SooYeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.5
    • /
    • pp.9-17
    • /
    • 2018
  • Recently, the increasing interest of biometric systems has led to the creation of many researches of biometrics forgery. In order to solve this forgery problem, this paper proposes a method of determining whether a synthesized face made of artificaial intelligence is real face or fake face. The proposed algorithm consists of two steps. Firstly, we create the fake face images using various GAN (Generative Adversarial Networks) algorithms. After that, deep learning algorithm can classify the real face image and the generated face image. The experimental results shows that the proposed algorithm can detect the fake face image which looks like the real face. Also, we obtained the classification accuracy of 88.7%.

A Implementation of 3D Virtual Face using two 2D photographs (두 장의 2D 사진을 이용한 3D 가상 얼굴 구현)

  • 임낙현;서경호;김태효
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.117-120
    • /
    • 2000
  • 본 논문에서는 2매의 2차원 얼굴영상으로부터 이들을 합성하여 3차원 얼굴의 가상형상을 복원한다. 여기서 2매의 2차원 얼굴영상은 정면과 측면 영상을 사용한다. 우선 임의의 일반 얼굴에 대한 기준모델을 설정하고, 이 모델에서, 얼굴형상의 특징을 표현하는 귀, 2개의 눈, 코 및 입 부분에 집중적으로 특징점을 규정하고, 그 외에 이마 및 턱 부분에도 특징 점을 규정하여 그 위치좌표를 저장해 둔다. 그 후 정면영상의 좌 우측에 측면영상을 대칭적으로 접속하고 영상의 기하변환 방법을 적용하여 점차적으로 합성한다. 이때 나타나는 합성부분에 색상 및 명도의 차를 제거하기 위해 선형보간법을 적용하여 자연스런 3차원 가상얼굴을 구현하게 된다. 그 결과 불특정 얼굴형상도 3차원으로 구현할 수 있음을 확인하였다.

  • PDF

Generation of Masked Face Image Using Deep Convolutional Autoencoder (컨볼루션 오토인코더를 이용한 마스크 착용 얼굴 이미지 생성)

  • Lee, Seung Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1136-1141
    • /
    • 2022
  • Researches of face recognition on masked faces have been increasingly important due to the COVID-19 pandemic. To realize a stable and practical recognition performance, large amount of facial image data should be acquired for the purpose of training. However, it is difficult for the researchers to obtain masked face images for each human subject. This paper proposes a novel method to synthesize a face image and a virtual mask pattern. In this method, a pair of masked face image and unmasked face image, that are from a single human subject, is fed into a convolutional autoencoder as training data. This allows learning the geometric relationship between face and mask. In the inference step, for a unseen face image, the learned convolutional autoencoder generates a synthetic face image with a mask pattern. The proposed method is able to rapidly generate realistic masked face images. Also, it could be practical when compared to methods which rely on facial feature point detection.

Realistic Avatar Face Generation Using Shading Mechanism (음영합성 기법을 이용한 실사형 아바타 얼굴 생성)

  • Park Yeon-Chool
    • Journal of Internet Computing and Services
    • /
    • v.5 no.5
    • /
    • pp.79-91
    • /
    • 2004
  • This paper proposes avatar face generation system that uses shading mechanism and facial features extraction method of facial recognition. Proposed system generates avatar face similar to human face automatically using facial features that extracted from a photo. And proposed system is an approach which compose shade and facial features. Thus, it has advantages that can make more realistic avatar face similar to human face. This paper proposes new eye localization method, facial features extraction method, classification method for minimizing retrieval time, image retrieval method by similarity measure, and realistic avatar face generation method by mapping facial features with shaded face pane.

  • PDF

Individual 3D facial avatar synthesis using elastic matching of facial mesh and image (얼굴 메쉬와 이미지의 동적 매칭을 이용한 개인 아바타의 3차원 얼굴 합성)

  • 강명진;김창헌
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.600-602
    • /
    • 1998
  • 본 논문은 정면과 측면 얼굴 이미지의 특성을 살린 3차원 개인 아바타 합성에 관한 연구이다. 표준 얼굴 메쉬를 얼굴 이미지의 특징점에 맞추려는 힘을 특징점 이외의 점들까지의 거리에 대한 가우스 분포를 따라 부드럽게 전달시켜 매쉬를 탄성있게 변형하는 힘으로 작용시켜 메쉬를 얼굴 이미지의 윤곽선을 중심으로 매칭시키고, 매칭된 메쉬가 매칭 이전의 메쉬의 기하학적 특성을 유지할 수 있도록 메쉬에 동적 피부 모델을 적용한다. 이렇게 생성한 3차원 메쉬에 이미지를 텍스춰 매핑하여 개인 특성을 살린 3차원 개인 아바타를 생성한다.

  • PDF

Motions syntheses 0in 3D facial model using features and motion parameters estimated through optical flow (Optical flow를 이용한 얼굴요소 및 얼굴의 움직임 측정값에 따른 3차원 얼굴모델의 움직임 합성)

  • 박도영;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.408-410
    • /
    • 1998
  • 동영상에서 얼굴의 움직임을 이해하는 것은 인간과 컴퓨터간의 상호작용을 이루는 분야에서 중요한 문제이다. 본 논문에서는 2차원 동영상에서 얼굴요소 및 얼굴의 움직임을 측정하기 위해 optical flow를 통해 매개변수화된 움직임 벡터를 추출한다. 그리고 나서, 이를 소수의 매개변수들의 조합으로 만들어 얼굴의 움직임에 대한 정보를 묘사할 수 있게 하였다. 매개변수화된 움직임 벡터는 얼굴 및 얼굴 요소의 특징에 따라 다른 벡터 모델을 사용한다. 2차원 동영상에서 매개변수화된 움직임 벡터는 매 프레임마다 갱신되어 각 프레임에서 얼굴 및 얼굴 요소의 위치를 파악한다. 또한, 갱신된 벡터의 매개변수 조합으로 만들어 확인된 움직임에 대한 정보가 3차원 얼굴모델에 전달되며 3차원 얼굴 모델의 단위행위(Action Unit)와 연결되어 2차원 동영상에서의 얼굴 움직임을 합성할 수 있게 하였다.

  • PDF