• 제목/요약/키워드: 얼굴표정 인식

검색결과 293건 처리시간 0.025초

표정변화에 따른 얼굴 표정요소의 특징점 추적 (Tracking of Facial Feature Points related to Facial Expressions)

  • 최명근;정현숙;신영숙;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.425-427
    • /
    • 2000
  • 얼굴 표정은 사람의 감정을 표현함과 동시에 그것을 이해할 수 있는 중요한 수단이다. 최근 이러한 얼굴 표정의 자동인식과 추적을 위한 연구가 많이 진행되고 있다. 본 연구에서는 대략적인 얼굴영역을 설정하여 얼굴의 표정을 나타내는 표정요소들을 찾아낸 후, 각 요소의 특징점을 추출하고 추적하는 방법을 제시한다. 제안하는 시스템의 개요는 입력영상의 첫 프레임에서 얼굴영역 및 특징점을 찾고, 연속되는 프레임에서 반복적으로 이를 추적한다. 특징점 추출과 추적에는 템플릿 매칭과 Canny 경계선 검출기, Gabor 웨이블릿 변환을 사용하였다.

  • PDF

이상치 억제를 통한 얼굴의 표정 조작 (Facial Expression Manipulation with Outlier Suppression)

  • 김성호;송병철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.129-131
    • /
    • 2022
  • 얼굴 표정 데이터셋에는 특정 감정 부류로 분류하기 어려운 이상치들이 존재한다. 이러한 이상치들은 얼굴 표정 인식과 더불어 얼굴 표정 조작의 성능을 저하시키는 원인 중 하나이다. 따라서, 본 논문에서는 이상치 억제를 통한 개선된 얼굴 표정 조작 프레임워크를 제안한다. 우리는 이상치 억제를 위해 의미론적 속성 분류 측면에서 우수한 성능을 보여주는 CLIP 을 활용하였다. 우리는 정성적인 비교를 통해 기존의 얼굴 표정 조작 기법보다 개선된 성능을 제시한다.

  • PDF

워핑 기법을 적용한 효율적인 얼굴 인식 (Warping using for Efficiency Face Recognition)

  • 정원구;이필규
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.832-834
    • /
    • 2005
  • 본 논문에서는 여러 가지 표정으로 입력되어지는 얼굴 이미지를 효율적으로 인식시키는 작업을 수행하는 방법에 대한 내용을 소개하고 있다. 각 얼굴 이미지들은 상황에 따라 많은 표정에 영향 성분을 포함하고 있다. 이런 각기 특성이 다른 얼굴 이미지들의 효율적인 인식을 위하여, 특징 점을 선정을 한 후 실험 진행을 하면 표정에 영향을 많이 받는 이미지를 구분할 수 있다. 여기서 제안하는 방법은 표정이 많이 포함된 이미지에 대하여 표정에 영향을 많이 미치는 특징 점과 그 특징 점영역에 와핑 기법을 처리함으로써 표정이 있는 이미지를 인식하는 방법을 제안한다.

  • PDF

웃음 치료 훈련을 위한 웃음 표정 인식 시스템 개발 (Development of a Recognition System of Smile Facial Expression for Smile Treatment Training)

  • 이옥걸;강선경;김영운;정성태
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.47-55
    • /
    • 2010
  • 본 논문은 실시간 카메라 영상으로부터 얼굴을 검출하고 얼굴 표정을 인식하여 웃음 치료훈련을 할 수 있는 시스템을 제안한다. 제안된 시스템은 카메라 영상으로부터 Haar-like 특징을 이용하여 얼굴 후보 영역을 검출한 다음, SVM분류기를 이용하여 얼굴 후보 영역이 얼굴 영상인지 아닌지를 검증한다. 그 다음에는 검출된 얼굴 영상에 대해, 조명의 영향을 최소화하기 위한 방법으로 히스토그램 매칭을 이용한 조명 정규화를 수행한다. 표정 인식 단계에서는 PCA를 사용하여 얼굴 특징 벡터를 획득한 후 다층퍼셉트론 인공신경망을 이용해 실시간으로 웃음표정을 인식하였다. 본 논문에서 개발된 시스템은 실시간으로 사용자의 웃음 표정을 인식하여 웃음 양을 화면에 표시해 줌으로써 사용자 스스로 웃음 훈련을 할 수 있게 해 준다. 실험 결과에 따르면, 본 논문에서 제안한 방법은 SVM 분류기를 통한 얼굴 후보 영역 검증과 히스토그램 매칭을 이용한 조명정규화를 이용하여 웃음 표정 인식률을 향상시켰다.

인물에 독립적인 표정인식을 위한 Action Unit 기반 얼굴특징에 관한 연구 (Action Unit Based Facial Features for Subject-independent Facial Expression Recognition)

  • 이승호;김형일;박성영;노용만
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.881-883
    • /
    • 2015
  • 실제적인 표정인식 응용에서는 테스트 시 등장하는 인물이 트레이닝 데이터에 존재하지 않는 경우가 빈번하여 성능 저하가 발생한다. 본 논문에서는 인물에 독립적인(subject-independent) 표정인식을 위한 얼굴특징을 제안한다. 제안방법은 인물에 공통적인 얼굴 근육 움직임(Action Unit(AU))에 기반한 기하학 정보를 표정 특징으로 사용한다. 따라서 인물의 고유 아이덴티티(identity)의 영향은 감소되고 표정과 관련된 정보는 강조된다. 인물에 독립적인 표정인식 실험결과, 86%의 높은 표정인식률과 테스트 비디오 시퀀스 당 3.5ms(Matlab 기준)의 매우 빠른 분류속도를 달성하였다.

연속 영상에서의 얼굴표정 및 제스처 인식 (Recognizing Human Facial Expressions and Gesture from Image Sequence)

  • 한영환;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권4호
    • /
    • pp.419-425
    • /
    • 1999
  • 본 논문에서는 흑백 동영상을 사용하여 얼굴 표정 및 제스처를 실시간으로 인식하는 시스템을 개발하였다. 얼굴 인식분야에서는 형판 정합법과 얼굴의 기하학적 고찰에 의한 사전지식을 바탕으로 한 방법을 혼합하여 사용하였다. 혼합 방법에 의해 입력영상에서 얼굴 부위만을 제한하였으며, 이 영역에 옵티컬 플로우를 적용하여 얼굴 표정을 인식하였다. 제스처 인식에서는 엔트로피를 분석하여 복잡한 배경영상으로부터 손 영역을 분리하는 방법을 제안하였으며 , 이 방법을 개선하여 손동작에 대한 제스처를 인식하였다. 실험 결과, 입력 영상의 배경에 크게 영향을 받지 않고서도 동일 영상에서 움직임이 큰 부위를 검출하여 얼굴의 표정 및 손 제스처를 실시간적으로 인식할 수 있었다.

  • PDF

상황에 민감한 베이지안 분류기를 이용한 얼굴 표정 기반의 감정 인식 (Emotion Recognition Based on Facial Expression by using Context-Sensitive Bayesian Classifier)

  • 김진옥
    • 정보처리학회논문지B
    • /
    • 제13B권7호
    • /
    • pp.653-662
    • /
    • 2006
  • 사용자의 상황에 따라 적절한 서비스를 제공하는 컴퓨팅 환경을 구현하려는 유비쿼터스 컴퓨팅에서 사람과 기계간의 효과적인 상호작용과 사용자의 상황 인식을 위해 사용자의 얼굴 표정 기반의 감정 인식이 HCI의 중요한 수단으로 이용되고 있다. 본 연구는 새로운 베이지안 분류기를 이용하여 상황에 민감한 얼굴 표정에서 기본 감정을 강건하게 인식하는 문제를 다룬다. 표정에 기반한 감정 인식은 두 단계로 나뉘는데 본 연구에서는 얼굴 특징 추출 단계는 색상 히스토그램 방법을 기반으로 하고 표정을 이용한 감정 분류 단계에서는 학습과 테스트를 효과적으로 실행하는 새로운 베이지안 학습 알고리즘인 EADF(Extended Assumed-Density Filtering)을 이용한다. 상황에 민감한 베이지안 학습 알고리즘은 사용자 상황이 달라지면 복잡도가 다른 분류기를 적용할 수 있어 더 정확한 감정 인식이 가능하도록 제안되었다. 실험 결과는 표정 분류 정확도가 91% 이상이며 상황이 드러나지 않게 얼굴 표정 데이터를 모델링한 결과 10.8%의 실험 오류율을 보였다.

중심이동과 독립성분분석에 의한 얼굴표정 인식 (Recognizing Facial Expression Using Centroid Shift and Independent Component Analysis)

  • 조용현;홍성준;박용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.401-404
    • /
    • 2006
  • 본 논문에서는 영상의 중심이동과 독립성분분석에 의한 효율적인 표정 인식방법을 제안하였다. 여기서 중심이동은 얼굴영상의 1차 모멘트에 의한 전처리 과정으로 불필요한 배경을 배제시켜 계산시간의 감소 및 인식률을 개선하기 위함이다. 또한 독립성분분석은 얼굴표정의 특징으로 기저영상을 추출하는 것으로 고차의 통계성을 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 방법을 320*243 픽셀의 48개(4명*6장*2그룹) 표정을 대상으로 Euclidean 분류척도를 이용하여 실험한 결과, 전처리를 수행치 않는 기존방법에 비해 우수한 인식성능이 있음을 확인하였다.

  • PDF

가변 크기 블록(Variable-sized Block)을 이용한 얼굴 표정 인식에 관한 연구 (Study of Facial Expression Recognition using Variable-sized Block)

  • 조영탁;류병용;채옥삼
    • 융합보안논문지
    • /
    • 제19권1호
    • /
    • pp.67-78
    • /
    • 2019
  • 본 논문에서는 가변 크기 블록 기반의 새로운 얼굴 특징 표현 방법을 제안한다. 기존 외형 기반의 얼굴 표정 인식 방법들은 얼굴 특징을 표현하기 위해 얼굴 영상 전체를 균일한 블록으로 분할하는 uniform grid 방법을 사용하는데, 이는 다음 두가지 문제를 가지고 있다. 얼굴 이외의 배경이 포함될 수 있어 표정을 구분하는 데 방해 요소로 작용하고, 각 블록에 포함된 얼굴의 특징은 입력영상 내 얼굴의 위치, 크기 및 방위에 따라 달라질 수 있다. 본 논문에서는 이러한 문제를 해결하기 위해 유의미한 표정변화가 가장 잘 나타내는 블록의 크기와 위치를 결정하는 가변 크기 블록 방법을 제안한다. 이를 위해 얼굴의 특정점을 추출하여 표정인식에 기여도가 높은 얼굴부위에 대하여 블록 설정을 위한 기준점을 결정하고 AdaBoost 방법을 이용하여 각 얼굴부위에 대한 최적의 블록 크기를 결정하는 방법을 제시한다. 제안된 방법의 성능평가를 위해 LDTP를 이용하여 표정특징벡터를 생성하고 SVM 기반의 표정 인식 시스템을 구성하였다. 실험 결과 제안된 방법이 기존의 uniform grid 기반 방법보다 우수함을 확인하였다. 특히, 제안된 방법이 형태와 방위 등의 변화가 상대적으로 큰 MMI 데이터베이스에서 기존의 방법보다 상대적으로 우수한 성능을 보여줌으로써 입력 환경의 변화에 보다 효과적으로 적응할 수 있음을 확인하였다.

새로운 얼굴 특징공간을 이용한 모델 기반 얼굴 표정 인식 (Model based Facial Expression Recognition using New Feature Space)

  • 김진옥
    • 정보처리학회논문지B
    • /
    • 제17B권4호
    • /
    • pp.309-316
    • /
    • 2010
  • 본 연구에서는 얼굴 그리드 각도를 특징공간으로 하는 새로운 모델 기반 얼굴 표정 인식 방법을 제안한다. 제안 방식은 6가지 얼굴 대표 표정을 인식하기 위해 표정 그리드를 이용하여 그리드의 각 간선과 정점이 형성하는 각도를 기반으로 얼굴 특징 공간을 구성한다. 이 방법은 다른 표정 인식 알고리즘의 정확도를 낮추는 원인인 변환, 회전, 크기변화와 같은 어파인 변환에 강건한 특징을 보인다. 또한, 본 연구에서는 각도로 특징공간을 구성하고 이 공간 내에서 Wrapper 방식으로 특징 부분집합을 선택하는 과정을 설명한다. 선택한 특징들은 SVM, 3-NN 분류기를 이용해 분류하고 분류 결과는 2중 교차검증을 통해 검증하도록 한다. 본 연구가 제안한 방법에서는 94%의 표정 인식 결과를 보였으며 특히 특징 부분집합 선택 알고리즘을 적용한 결과 전체 특징을 이용한 경우보다 약 10%의 인식율 개선 효과를 보인다.