얼굴 표정은 사람의 감정을 표현함과 동시에 그것을 이해할 수 있는 중요한 수단이다. 최근 이러한 얼굴 표정의 자동인식과 추적을 위한 연구가 많이 진행되고 있다. 본 연구에서는 대략적인 얼굴영역을 설정하여 얼굴의 표정을 나타내는 표정요소들을 찾아낸 후, 각 요소의 특징점을 추출하고 추적하는 방법을 제시한다. 제안하는 시스템의 개요는 입력영상의 첫 프레임에서 얼굴영역 및 특징점을 찾고, 연속되는 프레임에서 반복적으로 이를 추적한다. 특징점 추출과 추적에는 템플릿 매칭과 Canny 경계선 검출기, Gabor 웨이블릿 변환을 사용하였다.
얼굴 표정 데이터셋에는 특정 감정 부류로 분류하기 어려운 이상치들이 존재한다. 이러한 이상치들은 얼굴 표정 인식과 더불어 얼굴 표정 조작의 성능을 저하시키는 원인 중 하나이다. 따라서, 본 논문에서는 이상치 억제를 통한 개선된 얼굴 표정 조작 프레임워크를 제안한다. 우리는 이상치 억제를 위해 의미론적 속성 분류 측면에서 우수한 성능을 보여주는 CLIP 을 활용하였다. 우리는 정성적인 비교를 통해 기존의 얼굴 표정 조작 기법보다 개선된 성능을 제시한다.
본 논문에서는 여러 가지 표정으로 입력되어지는 얼굴 이미지를 효율적으로 인식시키는 작업을 수행하는 방법에 대한 내용을 소개하고 있다. 각 얼굴 이미지들은 상황에 따라 많은 표정에 영향 성분을 포함하고 있다. 이런 각기 특성이 다른 얼굴 이미지들의 효율적인 인식을 위하여, 특징 점을 선정을 한 후 실험 진행을 하면 표정에 영향을 많이 받는 이미지를 구분할 수 있다. 여기서 제안하는 방법은 표정이 많이 포함된 이미지에 대하여 표정에 영향을 많이 미치는 특징 점과 그 특징 점영역에 와핑 기법을 처리함으로써 표정이 있는 이미지를 인식하는 방법을 제안한다.
본 논문은 실시간 카메라 영상으로부터 얼굴을 검출하고 얼굴 표정을 인식하여 웃음 치료훈련을 할 수 있는 시스템을 제안한다. 제안된 시스템은 카메라 영상으로부터 Haar-like 특징을 이용하여 얼굴 후보 영역을 검출한 다음, SVM분류기를 이용하여 얼굴 후보 영역이 얼굴 영상인지 아닌지를 검증한다. 그 다음에는 검출된 얼굴 영상에 대해, 조명의 영향을 최소화하기 위한 방법으로 히스토그램 매칭을 이용한 조명 정규화를 수행한다. 표정 인식 단계에서는 PCA를 사용하여 얼굴 특징 벡터를 획득한 후 다층퍼셉트론 인공신경망을 이용해 실시간으로 웃음표정을 인식하였다. 본 논문에서 개발된 시스템은 실시간으로 사용자의 웃음 표정을 인식하여 웃음 양을 화면에 표시해 줌으로써 사용자 스스로 웃음 훈련을 할 수 있게 해 준다. 실험 결과에 따르면, 본 논문에서 제안한 방법은 SVM 분류기를 통한 얼굴 후보 영역 검증과 히스토그램 매칭을 이용한 조명정규화를 이용하여 웃음 표정 인식률을 향상시켰다.
실제적인 표정인식 응용에서는 테스트 시 등장하는 인물이 트레이닝 데이터에 존재하지 않는 경우가 빈번하여 성능 저하가 발생한다. 본 논문에서는 인물에 독립적인(subject-independent) 표정인식을 위한 얼굴특징을 제안한다. 제안방법은 인물에 공통적인 얼굴 근육 움직임(Action Unit(AU))에 기반한 기하학 정보를 표정 특징으로 사용한다. 따라서 인물의 고유 아이덴티티(identity)의 영향은 감소되고 표정과 관련된 정보는 강조된다. 인물에 독립적인 표정인식 실험결과, 86%의 높은 표정인식률과 테스트 비디오 시퀀스 당 3.5ms(Matlab 기준)의 매우 빠른 분류속도를 달성하였다.
본 논문에서는 흑백 동영상을 사용하여 얼굴 표정 및 제스처를 실시간으로 인식하는 시스템을 개발하였다. 얼굴 인식분야에서는 형판 정합법과 얼굴의 기하학적 고찰에 의한 사전지식을 바탕으로 한 방법을 혼합하여 사용하였다. 혼합 방법에 의해 입력영상에서 얼굴 부위만을 제한하였으며, 이 영역에 옵티컬 플로우를 적용하여 얼굴 표정을 인식하였다. 제스처 인식에서는 엔트로피를 분석하여 복잡한 배경영상으로부터 손 영역을 분리하는 방법을 제안하였으며 , 이 방법을 개선하여 손동작에 대한 제스처를 인식하였다. 실험 결과, 입력 영상의 배경에 크게 영향을 받지 않고서도 동일 영상에서 움직임이 큰 부위를 검출하여 얼굴의 표정 및 손 제스처를 실시간적으로 인식할 수 있었다.
사용자의 상황에 따라 적절한 서비스를 제공하는 컴퓨팅 환경을 구현하려는 유비쿼터스 컴퓨팅에서 사람과 기계간의 효과적인 상호작용과 사용자의 상황 인식을 위해 사용자의 얼굴 표정 기반의 감정 인식이 HCI의 중요한 수단으로 이용되고 있다. 본 연구는 새로운 베이지안 분류기를 이용하여 상황에 민감한 얼굴 표정에서 기본 감정을 강건하게 인식하는 문제를 다룬다. 표정에 기반한 감정 인식은 두 단계로 나뉘는데 본 연구에서는 얼굴 특징 추출 단계는 색상 히스토그램 방법을 기반으로 하고 표정을 이용한 감정 분류 단계에서는 학습과 테스트를 효과적으로 실행하는 새로운 베이지안 학습 알고리즘인 EADF(Extended Assumed-Density Filtering)을 이용한다. 상황에 민감한 베이지안 학습 알고리즘은 사용자 상황이 달라지면 복잡도가 다른 분류기를 적용할 수 있어 더 정확한 감정 인식이 가능하도록 제안되었다. 실험 결과는 표정 분류 정확도가 91% 이상이며 상황이 드러나지 않게 얼굴 표정 데이터를 모델링한 결과 10.8%의 실험 오류율을 보였다.
본 논문에서는 영상의 중심이동과 독립성분분석에 의한 효율적인 표정 인식방법을 제안하였다. 여기서 중심이동은 얼굴영상의 1차 모멘트에 의한 전처리 과정으로 불필요한 배경을 배제시켜 계산시간의 감소 및 인식률을 개선하기 위함이다. 또한 독립성분분석은 얼굴표정의 특징으로 기저영상을 추출하는 것으로 고차의 통계성을 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 방법을 320*243 픽셀의 48개(4명*6장*2그룹) 표정을 대상으로 Euclidean 분류척도를 이용하여 실험한 결과, 전처리를 수행치 않는 기존방법에 비해 우수한 인식성능이 있음을 확인하였다.
본 논문에서는 가변 크기 블록 기반의 새로운 얼굴 특징 표현 방법을 제안한다. 기존 외형 기반의 얼굴 표정 인식 방법들은 얼굴 특징을 표현하기 위해 얼굴 영상 전체를 균일한 블록으로 분할하는 uniform grid 방법을 사용하는데, 이는 다음 두가지 문제를 가지고 있다. 얼굴 이외의 배경이 포함될 수 있어 표정을 구분하는 데 방해 요소로 작용하고, 각 블록에 포함된 얼굴의 특징은 입력영상 내 얼굴의 위치, 크기 및 방위에 따라 달라질 수 있다. 본 논문에서는 이러한 문제를 해결하기 위해 유의미한 표정변화가 가장 잘 나타내는 블록의 크기와 위치를 결정하는 가변 크기 블록 방법을 제안한다. 이를 위해 얼굴의 특정점을 추출하여 표정인식에 기여도가 높은 얼굴부위에 대하여 블록 설정을 위한 기준점을 결정하고 AdaBoost 방법을 이용하여 각 얼굴부위에 대한 최적의 블록 크기를 결정하는 방법을 제시한다. 제안된 방법의 성능평가를 위해 LDTP를 이용하여 표정특징벡터를 생성하고 SVM 기반의 표정 인식 시스템을 구성하였다. 실험 결과 제안된 방법이 기존의 uniform grid 기반 방법보다 우수함을 확인하였다. 특히, 제안된 방법이 형태와 방위 등의 변화가 상대적으로 큰 MMI 데이터베이스에서 기존의 방법보다 상대적으로 우수한 성능을 보여줌으로써 입력 환경의 변화에 보다 효과적으로 적응할 수 있음을 확인하였다.
본 연구에서는 얼굴 그리드 각도를 특징공간으로 하는 새로운 모델 기반 얼굴 표정 인식 방법을 제안한다. 제안 방식은 6가지 얼굴 대표 표정을 인식하기 위해 표정 그리드를 이용하여 그리드의 각 간선과 정점이 형성하는 각도를 기반으로 얼굴 특징 공간을 구성한다. 이 방법은 다른 표정 인식 알고리즘의 정확도를 낮추는 원인인 변환, 회전, 크기변화와 같은 어파인 변환에 강건한 특징을 보인다. 또한, 본 연구에서는 각도로 특징공간을 구성하고 이 공간 내에서 Wrapper 방식으로 특징 부분집합을 선택하는 과정을 설명한다. 선택한 특징들은 SVM, 3-NN 분류기를 이용해 분류하고 분류 결과는 2중 교차검증을 통해 검증하도록 한다. 본 연구가 제안한 방법에서는 94%의 표정 인식 결과를 보였으며 특히 특징 부분집합 선택 알고리즘을 적용한 결과 전체 특징을 이용한 경우보다 약 10%의 인식율 개선 효과를 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.