• 제목/요약/키워드: 얼굴표정인식

검색결과 293건 처리시간 0.029초

얼굴 애니메이션을 위한 직관적인 유사 고유 얼굴 모델 (Intuitive Quasi-Eigenfaces for Facial Animation)

  • 김익재;고형석
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제12권2호
    • /
    • pp.1-7
    • /
    • 2006
  • 블렌드 쉐입 기반 얼굴 애니메이션을 위해 기저 모델(Expression basis)을 생성하는 방법을 크게 두 가지로 구분하면, 애니메이터가 직접 모델링을 하여 생성하는 방법과 통계적 방법에 기초하여 모델링하는 방법이 있다. 그 중 애니메이터에 의한 수동 모델링 방법으로 생성된 기저 모델은 직관적으로 표정을 인식할 수 있다는 장점으로 인해 전통적인 키프레임 제어가 가능하다. 하지만, 표정 공간(Expression Space)의 일부분만을 커버하기 때문에 모션데이터로부터의 재복원 과정에서 많은 오차를 가지게 된다. 반면, 통계적 방법을 기반으로 한 기저모델 생성 방법은 거의 모든 표정공간을 커버하는 고유 얼굴 모델(Eigen Faces)을 생성하므로 재복원 과정에서 최소의 오차를 가지지만, 시각적으로 직관적이지 않은 표정 모델을 만들어 낸다. 따라서 본 논문에서는 수동으로 생성한 기저모델을 유사 고유 얼굴 모델(Quasi-Eigen Faces)로 변형하는 방법을 제시하고자 한다. 결과로 생성되는 기저 모델은 시각적으로 직관적인 얼굴 표정을 유지하면서도 통계적 방법에 의한 얼굴표정 공간의 커버 영역과 유사하도록 확장할 수 있다.

  • PDF

얼굴 표정의 제시 유형과 제시 영역에 따른 정서 인식 효과 (Effects of the facial expression presenting types and facial areas on the emotional recognition)

  • 이정헌;박수진;한광희;김혜리;조경자
    • 감성과학
    • /
    • 제10권1호
    • /
    • pp.113-125
    • /
    • 2007
  • 본 연구에서는 동영상 자극과 정지 영상 자극을 사용하여 얼굴 표정의 영역(얼굴 전체/눈 영역/입 영역)에 따른 정서 상태 전달 효과를 알아보고자 하였다. 동영상 자극은 7초 동안 제시되었으며, 실험 1에서는 12개의 기본 정서에 대한 얼굴 표정 제시 유형과 제시 영역에 따른 정서 인식 효과를, 실험 2에서는 12개의 복합 정서에 대한 얼굴 표정 제시 유형과 제시 영역에 따른 정서 인식 효과를 살펴보았다. 실험 결과, 동영상 조건이 정지 영상 조건보다 더 높은 정서 인식 효과를 보였으며, 입 영역과 비교하였을 때 동영상에서의 눈 영역이 정지 영상 보다 더 큰 효과를 보여 눈의 움직임이 정서 인식에 중요할 것임을 시사하였다. 이는 기본 정서 뿐 아니라 복합 정서에서도 어느 정도 관찰될 수 있는 결과였다. 그럼에도 불구하고 정서의 종류에 따라 동영상의 효과가 달라질 수 있기 때문에 개별 정서별 분석이 필요하며, 또한, 얼굴의 특정 영역에 따라서도 상대적으로 잘 나타나는 정서 특성이 다를 수 있음을 사사해 준다.

  • PDF

컨볼루션 신경망 기반 표정인식 스마트 미러 (Smart Mirror for Facial Expression Recognition Based on Convolution Neural Network)

  • 최성환;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.200-203
    • /
    • 2021
  • 본 논문은 여러 인공지능 기술 중 이미지 분류를 통한 사람의 얼굴 표정을 인식하는 프로그램을 통해 사람의 표정을 인식하여 거울에 나타내는 스마트미러 기술을 소개한다. 여러 사람의 5가지 표정이미지를 통하여 인공지능으로 학습하였고, 사람이 거울을 볼 때 거울이 그 표정을 인식하여 인식한 결과를 거울에 나타내는 방식이다. 여러 사람의 얼굴을 표정별로 구분되어있는 dataset을 kaggle에서 제공하는 fer2013을 이용하여 사용하였고, 이미지 데이터 분류를 위해 네트워크 구조는 컨볼루션 신경망 구조를 이용하여 학습하였다. 최종적으로 학습된 모델을 임베디드 보드인 라즈베리파이4를 통해서 얼굴을 인식하여 거울을 통해 디스플레이에 나타내는 구조이다.

  • PDF

LDP 기반의 얼굴 표정 인식 평가 시스템의 설계 및 구현 (A Study of Evaluation System for Facial Expression Recognition based on LDP)

  • 이태환;조영탁;안용학;채옥삼
    • 융합보안논문지
    • /
    • 제14권7호
    • /
    • pp.23-28
    • /
    • 2014
  • 본 논문에서는 기존에 제안된 LDP(Local Directional Pattern)를 기반으로 얼굴 표정 인식 시스템에 대한 설계 및 구현 방법을 제안한다. LDP는 얼굴 영상을 구성하고 있는 각 화소를 주변 화소들과의 관계를 고려하여 지역적인 미세 패턴(Local Micro Pattern)으로 표현해준다. 새롭게 제시된 LDP에서 생성되는 코드들이 다양한 조건하에서 정확한 정보를 포함할 수 있는지의 여부를 검증할 필요가 있다. 따라서, 새롭게 제안된 지역 미세 패턴인 LDP를 다양한 환경에서 신속하게 검증하기 위한 평가 시스템을 구축한다. 제안된 얼굴 표정인식 평가 시스템에서는 6개의 컴포넌트를 거쳐 얼굴 표정인식률을 계산할 수 있도록 구성하였으며, Gabor, LBP와 비교하여 LDP의 인식률을 검증한다.

감정 트레이닝: 얼굴 표정과 감정 인식 분석을 이용한 이미지 색상 변환 (Emotion Training: Image Color Transfer with Facial Expression and Emotion Recognition)

  • 김종현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제24권4호
    • /
    • pp.1-9
    • /
    • 2018
  • 본 논문은 얼굴의 표정 변화를 통해 감정을 분석하는 방법으로 조현병의 초기 증상을 스스로 인지할 수 있는 감정 트레이닝 프레임워크를 제안한다. 먼저, Microsoft의 Emotion API를 이용하여 캡처된 얼굴 표정의 사진으로부터 감정값을 얻고, 피크 분석 기반 표준편차로 시간에 따라 변화하는 얼굴 표정의 미묘한 차이를 인식해 감정 상태를 각각 분류한다. 그리하여 Ekman이 제안한 여섯 가지 기본 감정 상태에 반하는 감정들의 정서 및 표현능력이 결핍된 부분에 대해 분석하고, 그 값을 이미지 색상 변환 프레임워크에 통합시켜 사용자 스스로 감정의 변화를 쉽게 인지하고 트레이닝 할 수 있도록 하는 것이 최종목적이다.

텍스처 기반의 눈 검출 기법 (Eye Detection Based on Texture Information)

  • 박찬우;박현;문영식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.315-318
    • /
    • 2007
  • 자동 얼굴 인식, 표정 인식과 같은 얼굴 영상과 관련된 다양한 연구 분야는 일반적으로 입력 얼굴 영상에 대한 정규화가 필요하다. 사람의 얼굴은 표정, 조명 등에 따라 다양한 형태변화가 있어 입력 영상 마다 정확한 대표 특징 점을 찾는 것은 어려운 문제이다. 특히 감고 있는 눈이나 작은 눈 등은 검출하기 어렵기 때문에 얼굴 관련 연구에서 성능을 저하시키는 주요한 원인이 되고 있다. 이에 다양한 변화에 강건한 눈 검출을 위하여 본 논문에서는 눈의 텍스처 정보를 이용한 눈 검출 방법을 제안한다. 얼굴 영역에서 눈의 텍스처가 갖는 특성을 정의하고 두 가지 형태의 Eye 필터를 정의하였다. 제안된 방법은 Adaboost 기반의 얼굴 영역 검출 단계, 조명 정규화 단계, Eye 필터를 이용한 눈 후보 영역 검출 단계, 눈 위치 점 검출 단계 등 총 4단계로 구성된다. 실험 결과들은 제안된 방법이 얼굴의 자세, 표정, 조명 상태 등에 강건한 검출 결과를 보여주며 감은 눈 영상에서도 강건한 결과를 보여준다.

얼굴인식을 위한 입술영역에 효과적인 말스버그 가보 웨이브렛 커널의 최적화 (Optimization of Effective Malsburg Gabor Wavelet Kernel at Mouth Region for Face Recognition)

  • 윤은실;이필규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.431-434
    • /
    • 2007
  • 얼굴 인식은 생체인식 기술 중 비 강압식이라는 장점으로 인해 각광받고 있는 분야이다. 그러나 얼굴인식은 조명, 표정에 의해 인식 성능이 저하되는 단점이 있다. 그 중 얼굴표정에 많은 영향을 받으며, 잡음이 많은 부분이 입술부분이다. 입술모양의 변화에 따라 가보벡터 추출에 잡음이 포함되기 때문에, 얼굴 인식 성능이 저하되는 현상이 발생됨을 실험을 통해 알 수 있었다. 따라서 본 논문에서는 입술모양의 변화에 따른 잡음을 줄이기 위해 입술영역에 최적화된 말스버그 가보 웨이브렛 커널(Malsburg Gabor Wavelet Kerne)을 제안한다. 각 입술 특징점에 말스 버그 가보 웨이브렛을 적용하여, 추출된 가보벡터를 통계적으로 분석함으로써 잡음을 확인 할 수 있었으며, 잡음을 최소화하기 위해 입술 영역에 적응적인 말스버그 가보 웨이브렛 커널 을 제안하였다. 실험에 사용한 이미지는 1196 FERET Gellery 이미지를 사용하였으며, 얼굴 인식 성능이 향상됨을 알 수 있었다.

얼굴 특징점의 지각적 위계구조 분석 (Analysis of Perceptual Hierarchy for Facial Feature Point)

  • 반세범;정찬섭
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 추계학술대회 논문집
    • /
    • pp.189-193
    • /
    • 2000
  • 표정인식 시스템을 구현하기 위해서는 어떠한 얼굴 특징점이 특정한 내적상태와 밀접한 관련이 있는가를 알아야한다. 이를 위해 MPEG-4 FDP 중 39개의 얼굴 특징점을 사용하여 쾌-불쾌 및 각성-수면의 내적상태와 얼굴 특징요소간의 상관관계를 분석하였다. 연극배우들의 다양한 표정연기 사진 150장으로부터, 5개의 필터 크기와 8개의 필터 방위로 구성된 Gator wavelet을 사용하여 39개의 특징점을 중심으로 영상처리 하였다. 이들 특징점의 필터 반응 값과 내적상태의 상관관계를 분석한 결과, 내적상태의 쾌-불쾌 차원은 주로 입과 눈썹 주변의 특징점과 밀접한 관련이 있었고, 각성-수면 차원은 주로 눈 주변의 특징점과 밀접한 관련이 있었다. 필터의 크기는 주로 저역 공간빈도 필터가 내적상태와 관련이 있었고, 필터의 방위는 주로 비스듬한 사선 방위가 내적상태와 관련이 있었다.

  • PDF

심리로봇적용을 위한 얼굴 영역 처리 속도 향상 및 강인한 얼굴 검출 방법 (Improving the Processing Speed and Robustness of Face Detection for a Psychological Robot Application)

  • 류정탁;양진모;최영숙;박세현
    • 한국산업정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.57-63
    • /
    • 2015
  • 얼굴 표정인식 기술은 다른 감정인식기술에 비해 비접촉성, 비강제성, 편리성의 특징을 가지고 있다. 비전 기술을 심리로봇에 적용하기 위해서는 표정인식을 하기 전 단계에서 얼굴 영역을 정확하고 빠르게 추출할 수 있어야 한다. 본 논문에서는 성능이 향상된 얼굴영역 검출을 위해서 먼저 영상에서 YCbCr 피부색 색상 정보를 이용하여 배경을 제거하고 상태 기반 방법인 Haar-like Feature 방법을 이용하였다. 입력영상에 대하여 배경을 제거함으로써 처리속도가 향상된, 배경에 강건한 얼굴검출 결과를 얻을 수 있었다.

동영상에서의 모델기반 특징추출을 이용한 얼굴 표정인식 (Facial Expression Recognition using Model-based Feature Extraction in Image Sequence)

  • 박미애;최성인;임동악;고재필
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.343-345
    • /
    • 2006
  • 본 논문에서는 ASM(Active Shape Model)과 상태 기반 모델을 사용하여 동영상으로부터 얼굴 표정을 인식하는 방법을 제안한다. ASM을 이용하여 하나의 입력영상에 대한 얼굴요소 특징점들을 정합하고 그 과정에서 생성되는 모양 파라미터 벡터를 추출한다. 동영상에 대해 추출되는 모양 파라미터 벡터 집합을 세 가지상태 중 한 가지를 가지는 상태 벡터로 변환하고 분류기를 통해 얼굴의 표정을 인식한다. 분류단계에서는 분류성능을 높이기 위해 새로운 개체 기반 학습 방법을 제안한다. 실험에서는 새로이 제안한 개체 기반 학습 방법이 KNN 분류기보다 더 좋은 인식률을 나타내는 것을 보인다.

  • PDF