• Title/Summary/Keyword: 얼굴추적

Search Result 340, Processing Time 0.042 seconds

The Real-Time Face Detection and Tracking System based on Skin-Color (색상에 기반한 실시간 얼굴 검출 및 추적 시스템)

  • 임옥현;이우주;이배호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.751-753
    • /
    • 2004
  • 본 논문에서 색상을 기반으로 한 알고리즘으로 얼굴을 검출하고 검출된 얼굴을 움직이는 Pan-Tilt 카메라 상에서 추적하는 방법을 제안하고자 한다. 얼굴 검출 알고리즘은 얼굴색의 특징인 피부색상을 이용하여 후보영역을 검출하고 후보 영역에서 얼굴형태의 특징인 타원 형태를 이용하여 최종적으로 얼굴을 검출하였다. 얼굴 추적은 영상에서 검출된 얼굴의 크기 및 위치 정보와 Pan-Tilt 카메라의 위치정보를 이용하여 항상 얼굴이 카메라의 중심에 위치하도록 하였다. 우리는 실제 실험에서 초당 10프레임 이상의 실시간 얼굴 검출 및 추적에 성공하였다.

  • PDF

Real-time Face Tracking Using Multi Color Model and Face Gradient Correction Algorithm (다중 컬러 모델을 이용한 실시간 얼굴 추적 및 기울기 보정 알고리즘)

  • 석영수;이응주
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.488-491
    • /
    • 2003
  • 본 논문에서는 실시간 CCD 카메라 입력 영상으로부터 다중 컬러 정보를 이용하여 얼굴 영역을 검출 및 추적하고 기울어진 얼굴을 보정하는 알고리즘을 제안하였다. 제안한 알고리즘은 먼저 획득된 RGB 영상에서 YCbCr컬러 모델과 YIQ컬러 모델로 변환한 후 Cr성분과 I성분을 추출하여 얼굴 피부색을 검출, 얼굴 영역 추출에 사용하였다. 또한 추출된 얼굴 후보 영역에서 수평, 수직 투영(Projection)정보로부터 최종 얼굴 영역으로 검출한 다음 검출된 얼굴 중심 좌표와 이전에 검출된 얼굴 중심 좌표 값을 유클리드언 거리로 얼굴을 추적하였으며 검출된 얼굴로부터 레이블링(Labeling)기법으로 눈 특징자를 검출, 눈의 기울기 각도를 보정함으로써 얼굴 기울기를 보정하였다. 제안한 얼굴 추적 및 기울기 보정 알고리즘을 사용하여 실험한 결과 다중 색상 정보를 사용함으로써 주위환경 변화에 강인하게 실시간 얼굴 영역 김출 및 추적이 가능하였고, 기울어진 얼굴 영상을 자동 보정함으로써 인식에 용이하였다.

  • PDF

Real-time Multi-face Tracking Method using Color and Depth Information (색체 및 깊이정보를 이용한 실시간 다중얼굴 추적 방법)

  • Jang, Su-Jin;Kim, Yoon-Hwan;Kim, Hye-Eun;Lee, Woo-In;Kim, Dong-Hwan;Yoon, Sun-Ah;Yu, Hee-Yong;Kim, Woo-Youl;Seo, Young-Ho;Kim, Dong-Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.120-123
    • /
    • 2013
  • 본 논문에서는 키넥트 센서의 RGB영상을 이용하여 얼굴을 검출하고 검출된 영역의 깊이정보를 템플릿으로 사용하여 다수개의 얼굴을 추적하는 방법을 제안한다. 이 논문은 [1]의 단일 얼굴 추적방법을 다수의 얼굴을 추적하도록 확장한 것이다. 다수의 얼굴추적을 실시간으로 처리하기 위하여 영상을 down sampling 하여 사용한다. 얼굴 검출은 기본적으로 기존의 Adaboost 방법을 사용하나, 피부색만을 이용, 탐색영역을 최대한 축소하여 수행 시간 및 오검출율을 줄인다. 얼굴추적은 깊이정보를 템플릿으로 하며, 깊이값에 따라 크기, 탐색영역을 조정하고, 또한 일정 프레임마다 얼굴을 검출하며 겹침, 새로 나타남, 영상 밖으로 사라짐 등의 얼굴추적 시 발생하는 문제를 해결한다.

  • PDF

Tracking of Facial Feature Points related to Facial Expressions (표정변화에 따른 얼굴 표정요소의 특징점 추적)

  • 최명근;정현숙;신영숙;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.425-427
    • /
    • 2000
  • 얼굴 표정은 사람의 감정을 표현함과 동시에 그것을 이해할 수 있는 중요한 수단이다. 최근 이러한 얼굴 표정의 자동인식과 추적을 위한 연구가 많이 진행되고 있다. 본 연구에서는 대략적인 얼굴영역을 설정하여 얼굴의 표정을 나타내는 표정요소들을 찾아낸 후, 각 요소의 특징점을 추출하고 추적하는 방법을 제시한다. 제안하는 시스템의 개요는 입력영상의 첫 프레임에서 얼굴영역 및 특징점을 찾고, 연속되는 프레임에서 반복적으로 이를 추적한다. 특징점 추출과 추적에는 템플릿 매칭과 Canny 경계선 검출기, Gabor 웨이블릿 변환을 사용하였다.

  • PDF

Multiple face detection and tracking using active camera and skin color (액티브 카메라와 피부색상에 의한 다중 얼굴 검출 및 추적)

  • 김광희;이배호
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.377-380
    • /
    • 2001
  • 본 논문에서는 실내에서 액티브 카메라를 사용하여 다중 인물의 얼굴의 위치를 검출하고. 추적할 수 있으며 조명과 배경 등의 영향에 강인한 추적 알고리즘을 제시하고자 한다. 알고리즘은 얼굴영역 검출, 추적의 2단계로 구성되며, 빠르고 효율적인 얼굴영역 검출은 추적 알고리즘의 성능향상으로 이어지므로, 이를 위해 독특한 색상영역 분포를 갖는 피부 색상 특징을 이용하였다. 표본영상에서 추출된 피부색상 픽셀들을 바탕으로 YCbCr 색상계를 사용하여 얼굴 색상모델을 구축한 후, Gaussian 함수를 사용하여 입력 영상의 픽셀과 얼굴색상모델과의 유사도를 결정하였다. 최종 얼굴 영역은 추출된 영역에 대한 얼굴의 타원특징, 해부학적 특징을 이용하여 결정된다. 추적은 추출된 얼굴영역과 temporal Gaussian 필터를 적용한 움직임 추정을 통한 움직임 검출의 조합으로 이루어진다. 또한, 예측버퍼의 사용으로 탐색영역의 축소로 인한 계산량 감소와 처리 속도의 증가시켰으며, pan/tilt가 가능한 카메라를 사용하여 상호 피드백이 가능하도록 하였다. 제시된 알고리즘은 PC 상에서 시뮬레이션되었으며, 좋은 결과를 얻을 수 있었다.

  • PDF

Face Tracking Using Face Feature and Color Information (색상과 얼굴 특징 정보를 이용한 얼굴 추적)

  • Lee, Kyong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.167-174
    • /
    • 2013
  • TIn this paper, we find the face in color images and the ability to track the face was implemented. Face tracking is the work to find face regions in the image using the functions of the computer system and this function is a necessary for the robot. But such as extracting skin color in the image face tracking can not be performed. Because face in image varies according to the condition such as light conditions, facial expressions condition. In this paper, we use the skin color pixel extraction function added lighting compensation function and the entire processing system was implemented, include performing finding the features of eyes, nose, mouth are confirmed as face. Lighting compensation function is a adjusted sine function and although the result is not suitable for human vision, the function showed about 4% improvement. Face features are detected by amplifying, reducing the value and make a comparison between the represented image. The eye and nose position, lips are detected. Face tracking efficiency was good.

Real-time Face Tracking Method Robust to Occlusion (가려짐에 강인한 실시간 얼굴추적 방 법)

  • Lee, Jun-Hwan;Jung, Hyun-Jo;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.25-28
    • /
    • 2016
  • 본 논문에서는 실시간 얼굴 추적을 위하여 기존의 CamShift 알고리즘의 단점을 보완한 새로운 CamShift 알고리즘을 제안한다. 배경 내 추적 객체와 색상이 유사한 객체가 존재할 경우 기존 CamShift 알고리즘은 불안정한 추적을 보여준다. 이러한 문제점을 화소 단위로 거리정보를 획득할 수 있는 Kinect 의 깊이 정보와 HSV 색공간 기반의 피부색 후보영역을 추출하는 Skin Detection 알고리즘을 이용하여 색상분포만 이용하는 기존의 CamShift 의 단점을 보완한다. 또한 추적하던 객체가 사라지거나 가려짐이 발생할 경우에도 다시 추적할 수 있는 특징점 기반의 매칭 알고리즘을 통하여 차폐영역에 강인한 특성을 가지게 한다. 이러한 향상된 CamShift 알고리즘을 사람의 얼굴 추적에 적용함으로써 다양한 분야에 활용 가능한 강인한 얼굴추적 알고리즘을 제안하고자 한다. 실험결과 제안하는 알고리즘은 기존의 추적 알고리즘인 TLD 보다 월등히 빠른 처리속도와 더 우수한 추적성능을 보여주었고, CamShift 보다 조금 느리지만 기존의 CamShift 가 가지고 있는 문제점들을 해결하였다.

  • PDF

Face Region Tracking Improvement and Hardware Implementation for AF(Auto Focusing) Using Face to ROI (얼굴을 관심 영역으로 사용하는 자동 초점을 위한 얼굴 영역 추적 향상 방법 및 하드웨어 구현)

  • Jeong, Hyo-Won;Ha, Joo-Young;Han, Hag-Yong;Yang, Hoon-Gee;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.89-96
    • /
    • 2010
  • In this paper, we proposed a method about improving face tracking efficiency of face detection for AF system using the faces to the ROI. The conventional face detection system detecting faces based skin color uses the ratio of skin pixels of the present frame to detected face regions of the past frame to track the faces. The tracking method is superior in the stability of the regions but it is inferior in the face tracking efficiency. We proposed a face tracking method using the area of the overlapping region in the detected face regions of the past frame and the present frame to improve the tracking efficiency. The proposed face tracking efficiency demonstration was performed by making a film of face detection with face tracking in real-time and using the moving traces of the detected faces.

A Fast and Accurate Face Detection and Tracking Method by using Depth Information (깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법)

  • Bae, Yun-Jin;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.586-599
    • /
    • 2012
  • This paper proposes a fast face detection and tracking method which uses depth images as well as RGB images. It consists of the face detection procedure and the face tracking procedure. The face detection method basically uses an existing method, Adaboost, but it reduces the size of the search area by using the depth image. The proposed face tracking method uses a template matching technique and incorporates an early-termination scheme to reduce the execution time further. The results from implementing and experimenting the proposed methods showed that the proposed face detection method takes only about 39% of the execution time of the existing method. The proposed tracking method takes only 2.48ms per frame with $640{\times}480$ resolution. For the exactness, the proposed detection method showed a little lower in detection ratio but in the error ratio, which is for the cases when a detected one as a face is not really a face, the proposed method showed only about 38% of that of the previous method. The proposed face tracking method turned out to have a trade-off relationship between the execution time and the exactness. In all the cases except a special one, the tracking error ratio is as low as about 1%. Therefore, we expect the proposed face detection and tracking methods can be used individually or in combined for many applications that need fast execution and exact detection or tracking.

Face Detecting and Tracking using Active Appearance Models and CAMSHIFT with a Pan-Tilt-Zoom-Camera (Pan-Tilt-Zoom-Camera에서 AAM과 CAMSHIFT를 이용한 얼굴 검출 및 추적)

  • Bae, Jeong-Wan;Choi, Kwun-Taeg;Byun, Hye-Ran
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.931-933
    • /
    • 2005
  • 감시 시스템에서 많이 사용되는 팬틸트줌(Pan-Tilt-Zoom) 카메라로 객체 검출과 추적을 할 때 카메라를 섬세하게 제어하는 것이 중요하다. 본 논문은 팬틸트줌 카메라를 이용하여 얼굴을 검출 및 추적하는 감시 시스템 구성과 카메라 제어 방법을 제안한다. 얼굴 검출을 위해서 P. Viola가 제안한 Haar-like feature를 이용한 빠른 객체 검출방법을 이용하고 얼굴 추적을 위해서 CAMSHIFT와 AAM을 이용하여 얼굴 추적과 얼굴 특징 정보 추출이 가능한 감시 시스템 구현을 하였다.

  • PDF