Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.380-382
/
2000
본 논문은 얼굴인식을 위한 특징으로 Haralick의 면함수 모델을 이용한 방법을 제시한다. 얼굴인식 시스템에서의 큰 제약조건 중 하나인 조명에 대해 향상된 인식을 수행하기 위해 일반영상의 에지추출에 주로 사용되었던 면함수를 적합시켜 얼굴인식을 위한 입력으로 사용하였다. 제안된 방법을 기존의 얼굴인식 기법과 비교 분석해 본 결과, 전체적인 인식률과 수행 시간이 향상되었고, 특히 조명 변화에 대해 조명 변화 보정을 위한 별도의 전처리 없이도 좋은 인식 결과를 나타내었다. 또한 제안된 방법에 신경망을 적용하여 성능을 비교하였다.
최근 딥러닝 기술은 다양한 분야에서 놀라운 성능을 보여주고 있어 많은 서비스에 적용되고 있다. 얼굴인식 또한 딥러닝 기술을 접목하여 높은 수준으로 얼굴인식이 가능해졌다. 하지만 딥러닝 기술은 원본 이미지를 최소한으로 변조시켜 딥러닝 모델의 오인식을 발생시키는 적대적 예제에 취약하다. 이에 따라, 본 논문에서는 딥러닝 기반 얼굴인식 시스템에 대해 적대적 예제를 이용하여 기만공격 실험을 수행하였으며 실제 얼굴에 분장할 수 있는 영역을 고려하여 설정된 변조 영역에 따른 기만공격 성능을 분석한다.
The purpose of this study is to design and implement a kernel for the support vector machine(SVM) to improve the performance of face recognition. Local feature analysis(LFA) has been well known for its good performance. SVM kernel plays a limited role of mapping low dimensional face features to high dimensional feature space but the proposed kernel using LFA is designed for face recognition purpose. Because of the novel method that local face information is extracted from training set and combined into the kernel, this method is expected to apply to various object recognition/detection tasks. The experimental results shows its improved performance.
In this paper, we deal with an emotion recognition method using facial images and speech signal. Six basic human emotions including happiness, sadness, anger, surprise, fear and dislike are investigated. Emotion recognition using the facial expression is performed by using a multi-resolution analysis based on the discrete wavelet transform. And then, the feature vectors are extracted from the linear discriminant analysis method. On the other hand, the emotion recognition from speech signal method has a structure of performing the recognition algorithm independently for each wavelet subband and then the final recognition is obtained from a multi-decision making scheme.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1997.11a
/
pp.171-175
/
1997
본 논문에서는 LVQ(Learning Vector Quentization) 신경회로망의 새로운 가중치 초기화법을 제안하고 이를 얼굴인식 시스템에 적용하였다. 제안한 방법은 초기가중치를 패턴 결정 경계면 주변에 설정함으로써 인식율을 높이는 방법이다. 얼굴인식의 특징 추출 방법으로서는 주성분 분석, 모멘트, 푸리에 기술자, 모멘트+주성분 분석 및 푸리에 기술자+주성분 분석 등을 사용하여 실험하였으며, 인식부의 LVQ 신경회로망에 제안된 방법을 적용하여 기존의 방법과 비교 실험하였다. 실험 결과 초기가중치를 최초 패턴으로 가지는 경우, 평균값을 취하는 경우, 랜덤하게 사용하는 경우 등에 비해서 우수한 인식율을 보임을 알 수 있었다.
얼굴인식 분야에서 PCA(Principal Component Analysis) 기반 알고리즘은 비교적 간단한 구조와 높은 인식률로 인해 많이 사용되고 있지만 조명이나 얼굴 포즈 변화에 민감하다는 단점이 있다[1]. 이런 단점을 해결하기 위한 노력으로 PCA를 다른 얼굴인식 알고리즘과 결합함으로서 조명과 포즈 변화에 강인한 얼굴인식을 위만 연구가 현재 활발히 진행되고 있다. 본 논문은 PCA기반 얼굴인식에서 조명이 다양하게 변할 때 이에 따른 인식률의 변화와, 인식이 실패했을 경우에 인식 대상이 유사도 상위후보군에 들어가는지를 조사함으로서 PCA기반 알고리즘의 신뢰도를 확인하고자 한다. 이를 위해 Yale Face Database H와 Extended Yale Face Database B를 이용하여 실험한 결과 약 93%의 인식 성공률을 확인했으며, 7%의 인식 실패한 영상의 경우 그 인식하고자 했던 얼굴이 유사도를 기준으로 정렬된 학습 영상에서 상위 후보군에 속한다는 실험 결과를 얻음으로서 PCA기반 얼굴 인식 알고리즘의 신뢰성을 확인할 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.718-720
/
2004
얼굴 인증에서 가장 보편적으로 사용되고 있는 주성분 분석(PCA . Principal Component Analysis)은 정면 얼굴과 같은 특징 패턴에 대해서 비교적 높은 성능을 보인다. 인식률을 떨어뜨리지 않으면서 데이터량을 줄일 수 있는 효과가 있어 클래스를 잘 축약하여 표현하기에 유용하다. 하지만 조명이나 표정의 변화에 대해서는 성능을 보장할 수 없다 이를 보완하기 위해 성분이 다른 클래스간의 분리가 수월하도록 선형판별분석(LDA Linear Discriminant Analysis)을 사용한다 LDA는 데이터의 양이 적을 때는 성능이 떨어지는 단점이 있다 그래서 PCA와 LDA를 융합한 기술을 사용하면 더 나은 성능을 얻을 수 있는데 Min, Max, Mean, Append, Majority voting방법 등이 이에 해당된다. 하지만 기존 연구에서는 제한적 데이터베이스에 대한 실험에 그쳐 실험 결과의 객관성이 부족했다. 본 논문에서는 정형화된 환경에서 여러 가지 데이터베이스를 사용해 실험함으로써 Min, Max, Mean 융합 알고리즘의 성능을 비교 분석한다. 융합 알고리즘이 언제나 좋은 성능을 내는 것은 아니지만 얼굴영상에서 조명이나 표정 등이 변화함에 상관없이 일정 수준의 인증율을 보장하고 있다.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.6
/
pp.783-788
/
2004
Many reported methods assume that the faces in an image or an image sequence have been identified and localization. Face detection from image is a challenging task because of the variability in scale, location, orientation and pose. The difficulties in visual detection and recognition are caused by the variations in viewpoint, viewing distance, illumination. In this paper, we present an efficient linear discriminant for multi-view face detection and face location. We define the training data by using the Fisher`s linear discriminant in an efficient learning method. Face detection is very difficult because it is influenced by the poses of the human face and changes in illumination. This idea can solve the multi-view and scale face detection problems. In this paper, we extract the face using the Fisher`s linear discriminant that has hierarchical models invariant size and background. The purpose of this paper is to classify face and non-face for efficient Fisher`s linear discriminant.
Journal of the Korea Society of Computer and Information
/
v.16
no.10
/
pp.93-100
/
2011
The necessity of research on extracting information of face and facial components in animation characters have been increasing since they can effectively express the emotion and personality of characters. In this paper, we introduce a method to extract face and facial components of animation characters by defining a mesh model adequate for characters and by using dominant colors. The suggested algorithm first generates a mesh model for animation characters, and extracts dominant colors for face and facial components by adapting the mesh model to the face of a model character. Then, using the dominant colors, we extract candidate areas of the face and facial components from input images and verify if the extracted areas are real face or facial components by means of color similarity measure. The experimental results show that our method can reliably detect face and facial components of animation characters.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.48
no.5
/
pp.72-83
/
2011
In this paper, we propose a method to detect and recover the occluded parts of face images using the correlation between pairs of pixels. In a training stage, correlation coefficients between every pairs of pixels are calculated using the occlusion-free face images. Once a new occluded face image is shown, the occluded area is detected and recovered using the correlation coefficients obtained in the training stage. We compare the performance of the proposed method with the conventional method based on PCA. The results show that the proposed method detects and recovers occluded area with much smaller noises than the conventional PCA based method. Moreover, recovered images by the proposed method were more smooth with reduced blurring effect.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.