뉴스 기사의 정치 분야는 보수, 진보와 같이 양극화된 편향적 특성이 존재하며 이를 정치적 편향성이라고 한다. 뉴스 기사로부터 편향성 문제를 분류하기 위해 키워드 기반의 학습 데이터를 구축하였다. 대부분의 임베딩 연구에서는 미등록어로 인한 문제를 완화시키기 위해 형태소 단위로 문장을 구성한다. 본 논문에서는 문장을 언어 모델에 의해 세부적으로 분할하는 부분 단어로 문장을 구성할 경우 미등록어 수가 감소할 것이라 예상하였다. 부분 단어 토큰화 기법을 이용한 문서 임베딩 모델을 제안하며 이를 SVM과 전방향 뉴럴 네트워크 구조에 적용하여 정치적 편향성 분류 실험을 진행하였다. 형태소 토큰화 기법을 이용한 문서 임베딩 모델과 비교 실험한 결과, 부분 단어 토큰화 기법을 이용한 문서 임베딩 모델이 78.22%로 가장 높은 정확도를 보였으며 부분 단어 토큰화를 통해 미등록어 수가 감소되는 것을 확인하였다. 분류 실험에서 가장 성능이 좋은 임베딩 모델을 이용하여 정치적 인물을 기반한 어휘를 추출하였으며 각 성향의 정치적 인물 벡터와의 평균 유사도를 통해 어휘의 편향성을 검증하였다.
본 연구는 공황장애 말뭉치 구축과 분석을 통해 공황장애의 특성을 살펴보고 공황장애 경향 문헌을 분류할 수 있는 딥러닝 자동 분류 모델을 만들고자 하였다. 이를 위해 소셜미디어에서 수집한 공황장애 관련 문헌 5,884개를 정신 질환 진단 매뉴얼 기준으로 직접 주석 처리하여 공황장애 경향 문헌과 비 경향 문헌으로 분류하였다. 이 중 공황장애 경향 문헌에 나타난 어휘적 특성 및 어휘의 관계성을 분석하기 위해 TF-IDF값을 산출하고 단어 동시출현 분석을 실시하였다. 공황장애의 특성 및 증상 간의 관련성을 분석하기 위해 증상 빈도수와 주석 처리된 증상 번호 간의 동시출현 빈도수를 산출하였다. 또한, 구축한 말뭉치를 활용하여 딥러닝 자동 분류 모델 학습 및 성능 평가를 하였다. 이를 위하여 최신 딥러닝 언어 모델 BERT 중 세 가지 모델을 활용하였고 이 중 KcBERT가 가장 우수한 성능을 보였다. 본 연구는 공황장애 관련 증상을 겪는 사람들의 조기 진단 및 치료를 돕고 소셜미디어 말뭉치를 활용한 정신 질환 연구의 영역을 확장하고자 시도한 점에서 의의가 있다.
문장 축소란 원본 문장의 기본적인 의미를 유지하면서 불필요한 단어나 구를 제거하는 일련의 정보 압축 과정을 의미한다. 기존의 문장 축소에 관한 연구들은 학습 과정에서 대량의 어휘나 구문적 자원을 필요로 하였으며, 복잡한 파싱 과정을 통해서 불필요한 문장의 구성원(예를 들어, 단어나 구, 절 등)들을 제거하여 문장을 요약하였다. 그러나 학습 데이타로부터 얻을 수 있는 어휘적 자원은 매우 한정적이며, 문장의 모호성과 예외적인 표현들 때문에 구문 분석 결과가 명료하게 제공되지 않은 언어에서는 문장 요약이 용이하지 않다. 이에 본 논문에서는 구문 분석을 대체하기 위한 방법으로 템플릿과 품사 정보를 이용한 문장 축소 방법을 제안한다. 제안하는 방법은 요약문의 구조적 형태를 결정하기 위한 문장 축소 템플릿(Sentence Reduction Templates)과 문법적으로 타당한 문장 구조를 구성하는 품사기반 축소규칙(Grammatical POS-based Reduction Rules)을 이용하여 요약 대상 문장의 구성을 분석하고 요약한다. 더불어, 문장 축소 템플릿 적용 시 발생하는 연산량 증가 문제를 은닉 마르코프 모델(HMM: Hidden Markov Model)의 비터비 알고리즘(Viterbi Algorithm)을 이용하여 효과적으로 처리한다. 마지막으로, 본 논문에서 제안한 문장 축소 방법의 결과와 기존 논문의 연구 결과를 비교 및 평가함으로써 제안하는 문장 축소 방법의 유용성을 확인한다.
사용자가 만족감을 느끼며 상호작용할 수 있는 대화형 인공지능을 개발하기 위한 노력이 이어지고 있다. 대화형 인공지능 개발을 위해서는 사람들의 실제 대화를 반영한 학습 데이터를 구축하는 것이 필요하지만, 기존 데이터셋은 질문-답변 형식이 아니거나 존대어를 사용하여 사용자가 친근감을 느끼기 어려운 문체로 구성되어 있다. 이에 본 논문은 온라인 커뮤니티에서 수집한 30,767개의 질문-답변 문장 쌍으로 구성된 대화 데이터셋(KOMUChat)을 구축하여 제안한다. 본 데이터셋은 각각 남성, 여성이 주로 이용하는 연애상담 게시판의 게시물 제목과 첫 번째 댓글을 질문-답변으로 수집하였다. 또한, 자동 및 수동 정제 과정을 통해 혐오 데이터 등을 제거하여 양질의 데이터셋을 구축하였다. KOMUChat의 타당성을 검증하기 위해 언어 모델에 본 데이터셋과 벤치마크 데이터셋을 각각 학습시켜 비교분석하였다. 그 결과 답변의 적절성, 사용자의 만족감, 대화형 인공지능의 목적 달성 여부에서 KOMUChat이 벤치마크 데이터셋의 평가 점수를 상회했다. 본 연구는 지금까지 제시된 오픈소스 싱글턴 대화형 텍스트 데이터셋 중 가장 대규모의 데이터이며 커뮤니티 별 텍스트 특성을 반영하여 보다 친근감있는 한국어 데이터셋을 구축하였다는 의의를 가진다.
이 연구의 목적은 과학과 교과교육학 지식(PCK)의 의미를 정립하고 수업에서 드러난 과학과 PCK 유형을 도출하는 것이다. 과학과 PCK 구성요소나 유형별 사례를 추출하고 분석하기 위해서, 수업 동영상, 수업분석 협의회 자료, 교사 면담 자료 등을 면밀히 교차 분석하였다. 이어서 교사별 또는 주제별 수업 사례들이 왜 과학을 가르치는 좋은 실천으로 간주되며, 실천의 어떤 측면이 그 수업을 다른 수업과 차별화하며 권장될 만한 것인지를 분석하였다. 즉, 근저 이론(grounded theory)의 연구 방법을 활용하였다. 분석대상으로 한 수업은 중학교 1학년 빛 단원에 해당하는 수업들로, 세명의 과학교사들이 진행한 같은 주제의 차시별 수업을 교차분석하여 과학과 PCK의 유형을 추출하였다. 본 연구에서 도출된 과학과 PCK 유형을 (1) 교육과정을 재구성하는 수업, (2) 주변 자연현상에 대한 학생 나름의 설명 모델을 만들어나가는 수업, (3) 과학이라는 사회적 언어 학습이 일어나는 수업, (4) 연계성을 기초로 학습동기를 유발하는 수업, (5) 스캐폴딩을 제공하여 학습 수요를 낮추는 수업, (6) 학생 이해에서 출발하는 수업, (7) 논증을 통한 탐구가 있는 수업, (8) 추상적인 과학개념을 구체화하는 수업, (9) 소외되는 학생이 없는 과학 수업으로 분류하였다. 각 PCK 유형에 따라 교사 전문성의 특징을 고찰하고, 높은 수준의 PCK를 지닌 교사들이 공유하는 특징을 결론으로 도출하였다.
자동 표적 인식(Automatic Target Recognition, ATR) 기술이 미래전투체계(Future Combat Systems, FCS)의 핵심 기술로 부상하고 있다. 그러나 정보통신(IT) 및 센싱 기술의 발전과 더불어 ATR에 관련이 있는 데이터는 휴민트(HUMINT·인적 정보) 및 시긴트(SIGINT·신호 정보)까지 확장되고 있음에도 불구하고, ATR 연구는 SAR 센서로부터 수집한 이미지, 즉 이민트(IMINT·영상 정보)에 대한 딥러닝 모델 연구가 주를 이룬다. 복잡하고 다변하는 전장 상황에서 이미지 데이터만으로는 높은 수준의 ATR의 정확성과 일반화 성능을 보장하기 어렵다. 본 논문에서는 이미지 및 텍스트 데이터를 동시에 활용할 수 있는 지식 그래프 기반의 ATR 방법을 제안한다. 지식 그래프와 딥러닝 모델 기반의 ATR 방법의 핵심은 ATR 이미지 및 텍스트를 각각의 데이터 특성에 맞게 그래프로 변환하고 이를 지식 그래프에 정렬하여 지식 그래프를 매개로 이질적인 ATR 데이터를 연결하는 것이다. ATR 이미지를 그래프로 변환하기 위해서, 사전 학습된 이미지 객체 인식 모델과 지식 그래프의 어휘를 활용하여 객체 태그를 노드로 구성된 객체-태그 그래프를 이미지로부터 생성한다. 반면, ATR 텍스트는 사전 학습된 언어 모델, TF-IDF, co-occurrence word 그래프 및 지식 그래프의 어휘를 활용하여 ATR에 중요한 핵심 어휘를 노드로 구성된 단어 그래프를 생성한다. 생성된 두 유형의 그래프는 엔터티 얼라이먼트 모델을 활용하여 지식 그래프와 연결됨으로 이미지 및 텍스트로부터의 ATR 수행을 완성한다. 제안된 방법의 우수성을 입증하기 위해 웹 문서로부터 227개의 문서와 dbpedia로부터 61,714개의 RDF 트리플을 수집하였고, 엔터티 얼라이먼트(혹은 정렬)의 accuracy, recall, 및 f1-score에 대한 비교실험을 수행하였다.
본 논문에서는 현장 교사 및 예비교사를 위한 기초 데이터과학 실습 교육 사례를 연구하였다. 본 논문에서는 기초 데이터과학 교육을 위해, 스프레드시트 SW를 데이터 수집 및 분석 도구로 사용하였다. 이후 데이터 가공, 예측 가설 및 예측 모델 검증을 위한 통계학을 교육하였다. 또한, 수천명 단위의 공공 빅데이터를 수집 및 가공하고, 모집단 예측 가설 및 예측 모델을 검증하는 교육 사례를 제안하였다. 이와 같은 데이터과학의 기초 교육내용을 담아, 스프레드시트 도구를 활용한 34시간 17주 교육 과정을 제시하였다. 데이터 수집, 가공 및 분석을 위한 도구로서, 스프레드시트는 파이썬과 달리, 프로그래밍 언어 및 자료구조에 대한 학습 부담이 없고, 질적 데이터와 양적 데이터에 대한 가공 및 분석 이론을 시각적으로 습득할 수 있는 장점이 있다. 본 교육 사례 연구의 결과물로서, 세가지 예측 가설 검증 사례들을 제시하고 분석하였다. 첫 번째로, 양적 공공데이터를 수집하여 모집단의 그룹별 평균값 차이 예측 가설을 검증하였다. 두 번째로, 질적 공공데이터를 수집하여 모집단의 질적 데이터 내 연관성 예측 가설을 검증하였다. 세 번째로, 양적 공공데이터를 수집하여 모집단의 양적 데이터 내 상관성 예측 가설 검증에 따른 회귀 예측 모델을 검증하였다. 그리고 본 연구에서 제안한 교육 사례의 효과성을 검증하기 위해, 예비교사와 현장교사의 만족도분석을 실시하였다.
This study provided longitudinal examination of the Chinese learners' acquisition of Korean vowels. Specifically, I examined the Chinese learners' Korean monophthongs /i, e, ɨ, ${\Lambda}$, a, u, o/ that were created at the time of 1 month and 12 months, tried to verify empirically how they learn by dealing with their mother tongue, and Korean vowels through dealing with pattern of the Perceptual Assimilation Model (henceforth PAM) of Best (Best, 1993; 1994; Best & Tyler, 2007) and the Speech Learning Model (henceforth SLM) of Flege (Flege, 1987; Bohn & Flege, 1992, Flege, 1995). As a result, most of the present results are shown to be similarly explained by the PAM and SLM, and the only discrepancy between these two models is found in the 'similar' category of sounds between the learners' native language and the target language. Specifically, the acquisition pattern of /u/ and /o/ in Korean is well accounted for the PAM, but not in the SLM. The SLM did not explain why the Chinese learners had difficulty in acquiring the Korean vowel /u/, because according to the SLM, the vowel /u/ in Chinese (the native language) is matched either to the vowel /u/ or /o/ in Korean (the target language). Namely, there is only a one-to-one matching relationship between the native language and the target language. In contrast, the Chinese learners' difficulty for the Korean vowel /u/ is well accounted for in the PAM in that the Chinese vowel /u/ is matched to the vowel pair /o, u/ in Korean, not the single vowel, /o/ or /u/.
본 논문에서는 모바일 증강현실기술 기반을 활용한 3D전래동화 콘텐츠에 관한 연구이다. 지식기반사회의 핵심콘텐츠 산업으로 주목받고 있는 시공간을 연결하는 SW기술 증강현실(Augmented Reality) 기술을 활용하여 흥미로운 전래동화를 한국어, 중국어, 영어로 자막언어선택으로 외국어학습에 적용한다. 이를 위해 상호작용 AR게임(놀이)으로 재구성하였다. 전래동화는 3D 콘텐츠 제작을 위해 6~8개의 scene으로 분량을 구성하고, 각색하여 번역하였다. 더빙은 모국어로 사용하는 원어민 성우를 통해 표준발음을 사용하여 더빙하였고, 효과음은 장면에 어울리도록 별도 제작하여 편집하였다. 시나리오를 구성하고, 3D 모델구성, 인터렉션 구성, 사운드 이펙트를 구성하고 콘텐츠 메타데이터를 작성한 후, Unity 3D 게임엔진을 실행하여 프로젝트를 생성하고, 스크립터로 기술한다. 재미있고 유익한 전래동화를 ICT기술을 접목한 융복한 콘텐츠로 경험하면서, 첨단기술기반 교육을 수용하며, 생활주변에서 소프트웨어를 인식할 수 있는 기회를 가지게 한다.
LMS 기반의 온라인 평가를 위해 출제되는 문제들은 교수자가 직접 출제하거나 또는 카테고리별로 나뉘어진 문제은행에서 난이도에 따른 자동 출제 방식을 주로 이용한다. 이중에서 난이도에 따른 자동출제 방식은 평가자들에게 출제되는 문제가 서로 다를수 있기 때문에 무엇보다 객관적이고 효율적인 방법으로 문제의 난이도를 관리하는 것이 중요하다. 본 논문에서는 문제의 정답률뿐만 아니라 해당 문제를 해결하는데 사용된 소요시간을 같이 고려한 난이도 재조정 알고리즘을 제시한다. 이를 위해 머신러닝의 로지스틱 회귀 분류 알고리즘을 이용하였으며, 학습모델의 예측 확률값을 기반으로 기준 임계값을 설정하여 각 문항별 난이도 재조정에 활용하였다. 그 결과 정답률에만 의존한 문항별 난이도에 많은 변화가 일어남을 확인할 수 있었다. 또한 조정된 난이도의 문제를 이용하여 그룹별 평가를 수행한 결과, 정답률 기반의 난이도 문제에 비해서 대부분의 그룹에서 평균 점수가 향상됨을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.