• Title/Summary/Keyword: 언어 학습 모델

Search Result 845, Processing Time 0.027 seconds

A Study on the Fast Enrollment of Text-Independent Speaker Verification for Vehicle Security (차량 보안을 위한 어구독립 화자증명의 등록시간 단축에 관한 연구)

  • Lee, Tae-Seung;Choi, Ho-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • Speech has a good characteristics of which car drivers busy to concern with miscellaneous operation can make use in convenient handling and manipulating of devices. By utilizing this, this works proposes a speaker verification method for protecting cars from being stolen and identifying a person trying to access critical on-line services. In this, continuant phonemes recognition which uses language information of speech and MLP(mult-layer perceptron) which has some advantages against previous stochastic methods are adopted. The recognition method, though, involves huge computation amount for learning, so it is somewhat difficult to adopt this in speaker verification application in which speakers should enroll themselves at real time. To relieve this problem, this works presents a solution that introduces speaker cohort models from speaker verification score normalization technique established before, dividing background speakers into small cohorts in advance. As a result, this enables computation burden to be reduced through classifying the enrolling speaker into one of those cohorts and going through enrollment for only that cohort.

  • PDF

A Technique for Pattern Recognition of Concrete Surface Cracks (콘크리트 표면 균열 패턴인식 기법 개발)

  • Lee Bang-Yeon;Park Yon-Dong;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.369-374
    • /
    • 2005
  • This study proposes a technique for the recognition of crack patterns, which includes horizontal, vertical, diagonal($-45^{\circ}$), diagonal($+45^{\circ}$), and random cracks, based on image processing technique and artificial neural network. A MATLAB code was developed for the proposed image processing algorithm and artificial neural network. Features were determined using total projection technique, and the structure(no. of layers and hidden neurons) and weight of artificial neural network were determined by learning from artificial crack images. In this process, we adopted Bayesian regularization technique as a generalization method to eliminate overfitting Problem. Numerical tests were performed on thirty-eight crack images to examine validity of the algorithm. Within the limited tests in the present study, the proposed algorithm was revealed as accurately recognizing the crack patterns when compared to those classified by a human expert.

Deep Learning-Based Automation Cyber Attack Convergence Trend Analysis Mechanism for Deep Learning-Based Security Vulnerability Analysis (사이버공격 융합 동향 분석을 위한 딥러닝 기반 보안 취약점 분석 자동화 메커니즘)

  • Kim, Jinsu;Park, Namje
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.1
    • /
    • pp.99-107
    • /
    • 2022
  • In the current technological society, where various technologies are converged into one and being transformed into new technologies, new cyber attacks are being made just as they keep pace with the changes in society. In particular, due to the convergence of various attacks into one, it is difficult to protect the system with only the existing security system. A lot of information is being generated to respond to such cyber attacks. However, recklessly generated vulnerability information can induce confusion by providing unnecessary information to administrators. Therefore, this paper proposes a mechanism to assist in the analysis of emerging cyberattack convergence technologies by providing differentiated vulnerability information to managers by learning documents using deep learning-based language learning models, extracting vulnerability information and classifying them according to the MITRE ATT&CK framework.

A Study on Research Trends in Literacy Education through a Key word Network Analysis (키워드 네트워크 분석을 통한 리터러시 교육 연구 동향)

  • Lee, Woo-Jin;Baek, Hye-Jin
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.53-59
    • /
    • 2022
  • The purpose of this study is to examine the factors related to learning through analysis of domestic research trends in literacy and to present the direction of literacy education. Research papers from 1993 to February 2022 were collected using RISS. 'Literacy' and 'Education' were used as search keywords, and 200 papers were selected for analysis. As a result of analysis using keyword network analysis, 118 keywords appeared at least three times out of a total of 810 keywords. The order of the keywords with the highest frequency is 'digital literacy', 'media literacy', and 'elementary school'. The following direction was suggested through the analysis results. First, it is required to establish an online teaching and learning resource platform and link it with education policy. Second, it is necessary to set literacy competencies and seek ways to improve competencies. Third, a digital-based convergence education model should be developed. This study is meaningful in that it analyzed the most recent literacy studies and suggested the direction of literacy education.

Methodology of Automatic Editing for Academic Writing Using Bidirectional RNN and Academic Dictionary (양방향 RNN과 학술용어사전을 이용한 영문학술문서 교정 방법론)

  • Roh, Younghoon;Chang, Tai-Woo;Won, Jongwun
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.175-192
    • /
    • 2022
  • Artificial intelligence-based natural language processing technology is playing an important role in helping users write English-language documents. For academic documents in particular, the English proofreading services should reflect the academic characteristics using formal style and technical terms. But the services usually does not because they are based on general English sentences. In addition, since existing studies are mainly for improving the grammatical completeness, there is a limit of fluency improvement. This study proposes an automatic academic English editing methodology to deliver the clear meaning of sentences based on the use of technical terms. The proposed methodology consists of two phases: misspell correction and fluency improvement. In the first phase, appropriate corrective words are provided according to the input typo and contexts. In the second phase, the fluency of the sentence is improved based on the automatic post-editing model of the bidirectional recurrent neural network that can learn from the pair of the original sentence and the edited sentence. Experiments were performed with actual English editing data, and the superiority of the proposed methodology was verified.

Analysis of Korean Spontaneous Speech Characteristics for Spoken Dialogue Recognition (대화체 연속음성 인식을 위한 한국어 대화음성 특성 분석)

  • 박영희;정민화
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.330-338
    • /
    • 2002
  • Spontaneous speech is ungrammatical as well as serious phonological variations, which make recognition extremely difficult, compared with read speech. In this paper, for conversational speech recognition, we analyze the transcriptions of the real conversational speech, and then classify the characteristics of conversational speech in the speech recognition aspect. Reflecting these features, we obtain the baseline system for conversational speech recognition. The classification consists of long duration of silence, disfluencies and phonological variations; each of them is classified with similar features. To deal with these characteristics, first, we update silence model and append a filled pause model, a garbage model; second, we append multiple phonetic transcriptions to lexicon for most frequent phonological variations. In our experiments, our baseline morpheme error rate (WER) is 31.65%; we obtain MER reductions such as 2.08% for silence and garbage model, 0.73% for filled pause model, and 0.73% for phonological variations. Finally, we obtain 27.92% MER for conversational speech recognition, which will be used as a baseline for further study.

Implementation of Git's Commit Message Classification Model Using GPT-Linked Source Change Data

  • Ji-Hoon Choi;Jae-Woong Kim;Seong-Hyun Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.123-132
    • /
    • 2023
  • Git's commit messages manage the history of source changes during project progress or operation. By utilizing this historical data, project risks and project status can be identified, thereby reducing costs and improving time efficiency. A lot of research related to this is in progress, and among these research areas, there is research that classifies commit messages as a type of software maintenance. Among published studies, the maximum classification accuracy is reported to be 95%. In this paper, we began research with the purpose of utilizing solutions using the commit classification model, and conducted research to remove the limitation that the model with the highest accuracy among existing studies can only be applied to programs written in the JAVA language. To this end, we designed and implemented an additional step to standardize source change data into natural language using GPT. This text explains the process of extracting commit messages and source change data from Git, standardizing the source change data with GPT, and the learning process using the DistilBERT model. As a result of verification, an accuracy of 91% was measured. The proposed model was implemented and verified to ensure accuracy and to be able to classify without being dependent on a specific program. In the future, we plan to study a classification model using Bard and a management tool model helpful to the project using the proposed classification model.

Developing English Proficiency by Using English Animation (영어애니메이션을 활용한 영어 의사소통 능력 향상에 관한 연구)

  • Jung, Jae-Hee
    • Cartoon and Animation Studies
    • /
    • s.37
    • /
    • pp.107-142
    • /
    • 2014
  • The purpose of this study is to examine the effects of the teaching English factors on student's communicative competence and motivation by using animation at the College. To achieve this purpose, this study presented an effective integrative teaching model to develop students communicative competence. The study created animation based teaching English model by using the animation of Frozen and applied it to lectures. Using animation in the classroom was a creative English teaching technique involving authentic activities like English dram, English guide contest, and various communicative activities A case study on the use of the animation in English classes at was examined and the language teaching syllabus were provided. In order to investigate the motivation and proficiency of learners, the writer chose 79 students who took the lecture. The study discovered the students' motivation and proficiency in English improved significantly. The results of experiment are as follows: First, using animation in the English class was found to have meaningful influence student's intrinsic motivation to learn English. Second, using animation in the English class was found to be effective for developing student's English proficiency. Third, appropriate materials should be selected and applied it to the real classroom activities. In conclusion, one of disadvantages of learning is less communication and the authentic interaction in a real life, so that the integrative teaching methodology which is combined English content and English animation content is also the effective method to improve student's intrinsic motivations in the age of global village.

A Study on Performance Evaluation of Hidden Markov Network Speech Recognition System (Hidden Markov Network 음성인식 시스템의 성능평가에 관한 연구)

  • 오세진;김광동;노덕규;위석오;송민규;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.30-39
    • /
    • 2003
  • In this paper, we carried out the performance evaluation of HM-Net(Hidden Markov Network) speech recognition system for Korean speech databases. We adopted to construct acoustic models using the HM-Nets modified by HMMs(Hidden Markov Models), which are widely used as the statistical modeling methods. HM-Nets are carried out the state splitting for contextual and temporal domain by PDT-SSS(Phonetic Decision Tree-based Successive State Splitting) algorithm, which is modified the original SSS algorithm. Especially it adopted the phonetic decision tree to effectively express the context information not appear in training speech data on contextual domain state splitting. In case of temporal domain state splitting, to effectively represent information of each phoneme maintenance in the state splitting is carried out, and then the optimal model network of triphone types are constructed by in the parameter. Speech recognition was performed using the one-pass Viterbi beam search algorithm with phone-pair/word-pair grammar for phoneme/word recognition, respectively and using the multi-pass search algorithm with n-gram language models for sentence recognition. The tree-structured lexicon was used in order to decrease the number of nodes by sharing the same prefixes among words. In this paper, the performance evaluation of HM-Net speech recognition system is carried out for various recognition conditions. Through the experiments, we verified that it has very superior recognition performance compared with the previous introduced recognition system.

  • PDF

Social Network Analysis of TV Drama via Location Knowledge-learned Deep Hypernetworks (장소 정보를 학습한 딥하이퍼넷 기반 TV드라마 소셜 네트워크 분석)

  • Nan, Chang-Jun;Kim, Kyung-Min;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.11
    • /
    • pp.619-624
    • /
    • 2016
  • Social-aware video displays not only the relationships between characters but also diverse information on topics such as economics, politics and culture as a story unfolds. Particularly, the speaking habits and behavioral patterns of people in different situations are very important for the analysis of social relationships. However, when dealing with this dynamic multi-modal data, it is difficult for a computer to analyze the drama data effectively. To solve this problem, previous studies employed the deep concept hierarchy (DCH) model to automatically construct and analyze social networks in a TV drama. Nevertheless, since location knowledge was not included, they can only analyze the social network as a whole in stories. In this research, we include location knowledge and analyze the social relations in different locations. We adopt data from approximately 4400 minutes of a TV drama Friends as our dataset. We process face recognition on the characters by using a convolutional- recursive neural networks model and utilize a bag of features model to classify scenes. Then, in different scenes, we establish the social network between the characters by using a deep concept hierarchy model and analyze the change in the social network while the stories unfold.