정서 전달에는 언어적 의사소통뿐만 아니라 비언어적 의사소통이 거론되곤 한다. 하지만 지금까지의 비언어적 의사소통 연구는 대부분 언어의 음향학적 연구나 얼굴표정 연구에 국한되었다. 또한 음악의 정서에 대한 연구는 음악적 구조 혹은 스타일과 여러 성격적 특질 및 행동 간의 관계, 혹은 생리적 효과 등 어떤 음악(what music)이 특정한 효과를 일으키느냐에 중점을 두고 있었다. 따라서 본 연구에서는 Gabrielsson & Juslin(1996)의 연구에 의거, 음악을 통하여 작곡가가 아닌 연주자의 의도된 정서가 청자에게 얼마나 잘 지각될 수 있는지 알아보고자 하였다. 봉 녕구의 가설은 다음과 같다; 첫째, 연주자의 정서적 의도는 음악의 모든 물리적 변인에 영향을 준다; 둘째, 청자는 의도된 정서를 지각하는 데 일반적으로 성공적이다; 셋째, 특정 정서는 다른 정서보다 더 잘 구분된다. 본 연구에 사용된 곡은 학습 효과를 배제하기 위하여 새롭게 전문 작곡가에 의해 작곡되었으며, 전문 연주자는 동일한 곡을 7종류의 정서(행복한, 슬픈, 화난, 두려운, 다정한, 엄숙한, 정서 표현 없음)를 표현하도록 연주하였다. 하나의 완전한 음악을 표현하기 위하여 각 곡은 멜로디(악기구성: 일렉트릭 기타, 베이스, 그랜드 피아노)와 리듬(드럼)을 포함하였다. 실험참가자는 각 곡을 듣고 7개의 정서 종류 각각에 점수를 평정하였다. 그 결과 이전 연구와 마찬가지로 청자는 연주자의 의도된 정서를 일반적으로 지각하는 데 성공하였으며 7개의 정서 중 특징적인 정서("행복한", "슬픈", "화난", "다정한") 는 다른 정서 보다 더 잘 구별되었다. 본 연구에 사용된 "두려운" 정서 곡의 음향분석 결과 소리 강도의 큰 변산이 특징이었다. 이는 이전 연구에서 "두려운" 정서의 특징인 타이밍의 큰 변산과 함께, "두려운" 정서가 '불규칙적이거나 변화가 커서 예측하기 어려운' 속성을 지니고 있음을 시사한다. 또한 "다정한" 정서에 대해서 본 연구에서는 다른 모든 정서와 유의미한 차이를 보인 반면, 이전 연구에서는 "슬픈"과 유의미한 차이가 없었다. 이는 본 연구에 쓰인 "다정한" 정서의 곡은 리듬 패턴을 다른 정서 버전과는 다르게 보사노바 리듬을 사용하였다. 이전 연구와는 다르게 빠른 템포였음에도 불구하고 구별이 잘 된 이유는 이와 같이 장르 특징적인 영향이 컸기 때문이라고 할 수 있다. 이는 연주자나 음악 스타일 자체의 성격이 정서 판단에 있어 큰 영향을 준다는 사실을 시사한다. 종합적으로 음악을 통한 정서 전달에 있어 연주자, 청자, 악기, 음악 스타일의 차이가 영향을 줄 수 있다는 사실을 확인하였으며 이러한 결과는 Scherer & Oshinsky(1977)가 언급하였듯 음악 연주가 다른 비언어적 의사소통 방법과 공유하는 특징이 있음을 시사한다.
개체명 인식은 질의 응답, 정보 검색, 기계 번역 등 다양한 분야에서 유용하게 사용되고 있는 기술이다. 개체명 인식의 경우 인식의 대상인 개체명이 대부분 새롭게 등장하거나 기존에 존재하는 단어와 중의적 의미를 갖는 고유한 단어라는 문제점이 있다. 본 논문에서는 한국어 개체명 인식에서 미등록어 및 중의성 문제를 해결하기 위한 딥 러닝 모델을 제안한다. 제안하는 모델은 형태소 및 자음/모음을 이용하여 새롭게 등장하는 단어에 대한 기존 단어와의 형태적 유사성을 고려한다. 또한 임베딩 및 양방향 LSTM-RNNs-CRF 모델을 이용하여, 각 입력 값의 문맥에 따른 의미적 유사성, 문법적 유사성을 고려한다. 제안하는 딥 러닝 모델을 사용하여, F1 점수 85.71의 결과를 얻었다.
상호참조해결은 주어진 문서에서 멘션을 추출하고 동일한 개체의 멘션들을 군집화하는 작업이다. 기존 상호참조해결 연구의 멘션탐지 단계에서 진행한 가지치기는 모델이 계산한 점수를 바탕으로 순위화하여 정해진 비율의 멘션만을 상호참조해결에 사용하기 때문에 잘못 예측된 멘션을 입력하거나 정답 멘션을 제거할 가능성이 높다. 또한 멘션 탐지와 상호참조해결을 종단간 모델로 진행하여 학습 시간이 오래 걸리고 모델 복잡도가 높은 문제가 존재한다. 따라서 본 논문에서는 상호참조해결을 2단계 파이프라인 모델로 진행한다. 첫번째 멘션 탐지 단계에서 후보 단어 범위의 점수를 계산하여 멘션을 예측한다. 두번째 상호참조해결 단계에서는 멘션 탐지 단계에서 예측된 멘션을 그대로 이용해서 서로 상호참조 관계인 멘션 쌍을 예측한다. 실험 결과, 2단계 학습 방법을 통해 학습 시간을 단축하고 모델 복잡도를 축소하면서 종단간 모델과 유사한 성능을 유지하였다. 상호참조해결은 Light에서 68.27%, AMI에서 48.87%, Persuasion에서 69.06%, Switchboard에서 60.99%의 성능을 보였다.
문장 압축은 원본 문장의 중요한 의미는 유지하면서 길이가 축소된 압축 문장을 생성하는 자연어처리 태스크이다. 문법적으로 적절한 문장 압축을 위해, 초기 연구들은 사람이 정의한 언어 규칙을 활용하였다. 또한 시퀀스-투-시퀀스 모델이 기계 번역과 같은 다양한 자연어처리 태스크에서 좋은 성능을 보이면서, 이를 문장 압축에 활용하고자 하는 연구들도 존재했다. 하지만 언어 규칙을 활용하는 연구의 경우 모든 언어 규칙을 정의하는 데에 큰 비용이 들고, 시퀀스-투-시퀀스 모델 기반 연구의 경우 학습을 위해 대량의 데이터셋이 필요하다는 문제점이 존재한다. 이를 해결할 수 있는 방법으로 사전 학습된 언어 모델인 BERT를 활용하는 문장 압축 모델인 Deleter가 제안되었다. Deleter는 BERT를 통해 계산된 perplexity를 활용하여 문장을 압축하기 때문에 문장 압축 규칙과 모델 학습을 위한 데이터셋이 필요하지 않다는 장점이 있다. 하지만 Deleter는 perplexity만을 고려하여 문장을 압축하기 때문에, 문장에 속한 단어들의 언어 정보를 반영하여 문장을 압축하지 못한다. 또한, perplexity 측정을 위한 BERT의 사전 학습에 사용된 데이터가 압축 문장과 거리가 있어, 이를 통해 측정된 perplexity가 잘못된 문장 압축을 유도할 수 있다는 문제점이 있다. 이를 해결하기 위해 본 논문은 언어 정보의 중요도를 수치화하여 perplexity 기반의 문장 점수 계산에 반영하는 방법을 제안한다. 또한 고유명사가 자주 포함되어 있으며, 불필요한 수식어가 생략되는 경우가 많은 뉴스 기사 말뭉치로 BERT를 fine-tuning하여 문장 압축에 적절한 perplexity를 측정할 수 있도록 하였다. 영어 및 한국어 데이터에 대한 성능 평가를 위해 본 논문에서 제안하는 LI-Deleter와 비교 모델의 문장 압축 성능을 비교 실험을 진행하였고, 높은 문장 압축 성능을 보임을 확인하였다.
최근의 문서요약 시스템은 인공신경망을 이용한 End-to-End 방식이 주류를 이루고 있다. 이러한 시스템은 인간의 자질 추출 과정이 필요 없으며 데이터 중심의 접근 방법을 채택한다. 그러나 기존의 관련 연구들은 품사 정보, 개체명 정보, 단어의 빈도 정보와 같은 언어 분석 자질이 중요 문장을 선택하여 요약을 작성하는데 유용함을 보여왔다. 본 연구에서는 기존의 언어 분석 자질을 활용하여 인공신경망을 기반으로 한 단일 문서의 추출 요약 시스템을 제안한다. 언어 분석 자질의 유용성을 보이기 위해 자질을 사용하는 모델과 사용하지 않는 모델을 비교하였다. 실험 결과 자질을 사용하는 모델이 그렇지 않은 모델에 비해 약 0.5점의 Rouge-2 F1점수 향상을 보였다.
뇌졸중 환자의 실어증 유무를 정확히 판별하고 환자의 미세한 언어적 변화를 적절히 관찰하기 위해서는 일차적으로 신뢰로운 검사도구를 사용하여야 하고, 또한 검사자가 해당 도구의 사용에 있어 충분히 숙지하고 있어야 한다. 본 연구에서는 뇌졸중 환자의 실어증 및 말장애 유무의 진단에서 검사자의 전공영역에 따른 관찰자간 신뢰도를 살펴보고 훈련 전과 후의 차이를 비교해보고자 하였다. 이를 위해, 침상에 있는 뇌졸중 환자 46명을 대상으로 언어치료사, 신경과 전공의, 그리고 간호사 각각 4명씩 총 12명이 동시에 실어증 및 말장애 유무를 평가하였다. 연구 결과, 서로 다른 전공 영역의 전문가들 간에 말명료도 과제와/아/모음연장발성 과제의 '음질' 영역에서만 'acceptable'로 나타났고, 나머지 하부검사 영역에서는 'good-excellent'로 나타났다. 관찰자간 신뢰도가 'acceptable'로 나타난 과제들에 대해 3주간의 비디오 훈련 전후의 점수 차이를 비교하였다. 그 결과, 훈련 후 말명료도 과제에서 검사자들 간의 평정 점수의 차이는 유의하게 줄어들었으며, '음질' 평정의 정확성도 유의하게 증가하였다. 임상 경험 정도와 각 하부검사에 대한 평정 정확성 간의 상관관계를 알아본 결과, 언어치료사들은 임상 경험 정도가 증가할수록 그림설명하기 과제와 말명료도 과제에서, 그리고 의사 및 간호사들은 그림설명하기 과제에서 판정 정확도가 높아지는 것으로 나타났다. 결론적으로, 이 연구 결과는 뇌졸중 환자의 의사소통장애 진단에 있어 신경언어장애 환자 중, 특히 말장애환자에 대한 꾸준한 경험과 훈련이 반드시 필요하며, 훈련을 통해 평정 신뢰도를 확보할 수 있음을 시사한다.
본 연구는 프로그래밍 교육을 효과적으로 실시하기 위한 실제적 능력을 향상시키기 위하여 프로그래밍 교육 프로그램을 설계하고 적용하여 예비교사의 프로그래밍 교수내용지식의 변화를 확인한 연구이다. 제작된 교육 프로그램에서는 블록 기반 모바일 프로그래밍 언어인 앱 인벤터를 사용하였고, 문제 기반 학습 방법과 프로젝트 기반 학습 방법을 활용하였다. 개발된 교육프로그램을 예비정보교사에게 교육하고 프로그래밍 교수내용지식을 확인하기 위한 평가문항으로 자기평가를 실시하였다. 그 결과 문제 기반 학습 방법으로 프로그래밍을 학습한 후 프로그래밍 교수내용지식 점수와 교수법영역 지식의 점수가 유의하게 향상되었고, 프로젝트 기반 학습 방법을 적용한 후 내용지식영역, 교수법영역, 교육과정영역의 점수가 유의하게 향상되었다.
대규모 언어 모델 (Large Language Model, LLM)을 인간의 선호도 관점에서 평가하는 것은 기존의 벤치마크 평가와는 다른 도전적인 과제이다. 이를 위해, 기존 연구들은 강력한 LLM을 평가자로 사용하여 접근하였지만, 높은 비용 문제가 부각되었다. 또한, 평가자로서 LLM이 사용하는 주관적인 점수 기준은 모호하여 평가 결과의 신뢰성을 저해하며, 단일 모델에 의한 평가 결과는 편향될 가능성이 있다. 본 논문에서는 엄격한 기준을 활용하여 편향되지 않은 평가를 수행할 수 있는 평가 프레임워크 및 평가자 모델 'FubaoLM'을 제안한다. 우리의 평가 프레임워크는 심층적인 평가 기준을 통해 다수의 강력한 한국어 LLM을 활용하여 연쇄적 사고(Chain-of-Thought) 기반 평가를 수행한다. 이러한 평가 결과를 다수결로 통합하여 편향되지 않은 평가 결과를 도출하며, 지시 조정 (instruction tuning)을 통해 FubaoLM은 다수의 LLM으로 부터 평가 지식을 증류받는다. 더 나아가 본 논문에서는 전문가 기반 평가 데이터셋을 구축하여 FubaoLM 효과성을 입증한다. 우리의 실험에서 앙상블된 FubaoLM은 GPT-3.5 대비 16% 에서 23% 향상된 절대 평가 성능을 가지며, 이항 평가에서 인간과 유사한 선호도 평가 결과를 도출한다. 이를 통해 FubaoLM은 비교적 적은 비용으로도 높은 신뢰성을 유지하며, 편향되지 않은 평가를 수행할 수 있음을 보인다.
개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간 등과 같은 고유한 의미를 갖는 단어 열을 찾아 범주를 부착하는 기술이다. 기존의 연구에서는 단어 단위나 음절 단위를 입력으로 사용하였다. 하지만 단어 단위의 경우 미등록어 처리가 어려우며 음절 단위의 경우 단어 고유의 의미가 희석되는 문제가 발생한다. 이러한 문제들을 해결하기 위해 본 논문에서는 형태소 단위 개체명 인식기와 음절 단위 개체명 인식기를 앙상블하여 보정된 결과를 예측하는 개체명 인식기를 제안한다. 제안된 모델은 각각의 단일 입력 모델보다 향상된 F1-점수(0.8049)를 보였다.
상하위 관계 자동 추출은 분류체계를 자동 구축하는 데 있어서 핵심적인 내용이며, 이렇게 자동으로 구축된 분류 체계는 정보 추출과 같은 여러 가지 분야에 있어서 중요하게 사용된다. 본 논문에서는 위키피디아 카테고리 구조로부터 상하위 관계를 추출하는 방식에 대하여 제안한다. 본 논문에서는 판별하고자하는 위키피디아 카테고리 구조뿐만이 아닌, 그와 관련된 다른 위키피디아 카테고리 구조까지 고려하여 카테고리 이름에 나타난 토큰들간의 수식 그래프를 구축한 후, 그래프 분석 알고리즘을 통하여 각 카테고리 구조가 상하위 관계일 가능성에 대한 점수를 매긴다. 실험 결과, 본 알고리즘은 기존의 연구로 상하위 관계임을 판별할 수 없었던 일부 카테고리 구조에 대하여 성공적으로 상하위 관계인지를 판별하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.