• Title/Summary/Keyword: 언더플로우

Search Result 45, Processing Time 0.017 seconds

Prefetching Based Adaptive Media Playout for Seamless Media Streaming (끊김없는 미디어 스트리밍을 위한 프리페칭 기반 적응적 미디어 재생 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • The KIPS Transactions:PartA
    • /
    • v.16A no.5
    • /
    • pp.327-338
    • /
    • 2009
  • Recently, with the advance of computing and networking technique, the high speed internet becomes widespread, however, it is still hard job to do streaming the media which requires high network bandwidth over the internet. Previous researches for streaming over the internet mainly proposed techniques that controls the QoS(Quality of Service) of the media in proportion to the network status. Though, this could be the solution for the service provider while the service user who wants constant QoS may not satisfy with variable QoS. In the paper, we propose a network adaptive prefetching technique, PAP, for guarantee of constant QoS. The PAP prefetches frames by increasing the frame transmission rate while the available network bandwidth is high. The PAP uses the prefetched frames to guarantee the QoS while the available network bandwidth is low and increases the playout interval to prevent buffer underflow. The experiment result shows that the proposed PAP could guarantee the constant QoS by prefetching the frames adaptively to the network bandwidth with the characteristic of video stream.

Performance Evaluation of Smoothing Algorithms Reflecting Network Traffic (네트워크 트래픽을 반영하는 스무딩 알고리즘의 성능평가)

  • Lee, Myoun-Jae;Park, Do-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2326-2333
    • /
    • 2009
  • In the adaptable bandwidth allocation technique, a transmission plan for variable rate video data is made by smoothing algorithms such as CBA algorithm and the data is sent by the transmission plan considering network traffic. But the CBA algorithm, the MCBA algorithm, MVBA algorithm and the other smoothing algorithms produce a transmission plan where the size of the increasing interval of transmission rate is generally larger than the size of the decreasing interval. And the transmission rate in CBA algorithm, the MCBA algorithm, the MVBA algorithm is changed in overflow curve during the increasing interval of transmission rate. This may cause many frames to be discarded when available transmission rate is larger than transmission rate by the transmission plan. In this paper, the smoothing algorithm, where transmission rate is changed in the middle of underflow curve and overflow curve to decrease the number of discarded frames, but the transmission rate increases at the minimum, and the CBA algorithm, the MCBA algorithm, the MVBA algorithm are applied to a transmission plan in the adaptable bandwidth allocation technique, and the minimum frame rates, the average frame rates, the variation of frame rates, and the numbers of discarded frames are compared in among algorithms.

A Study on the Dynamic Range Performance Evaluation Method of Detector with Variation of Tube Voltage and Automatic Exposure Control (AEC) in Digital Radiography (DR) -Focused on the Dynamic Step Wedge and Histogram Evaluation (DR(Digital Radiography)에서 관전압 및 자동노출제어장치의 감도 변화에 따른 검출기의 동적 범위 성능평가 방법연구 -Dynamic Step Wedge와 히스토그램 평가를 중심으로)

  • Hwang, Jun-Ho;Choi, Ji-An;Kim, Hyun-Soo;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.4
    • /
    • pp.368-380
    • /
    • 2019
  • This study proposes a method to evaluate the performance of a detector by analyzing the dynamic step wedge and histogram according to the change of the tube voltage and sensitivity when using the Automatic Exposure Control (AEC). The performance of a detector was evaluated by measuring X-ray quality, Entrance Surface Dose (ESD), tube current, dynamic range corresponding to detector sensitivities of S200, S400, S800, S1000 per tube voltage of 60, 70, 81, 90 kVp. As a results, all of the qualities satisfied the acceptance criteria, and the Entrance Surface Dose and tube current were decreased stage by stage as sensitivity was set higher. In the dynamic step wedge, the observable dynamic range has also increased as tube voltage became higher. The histogram showed the quantization separation phenomena as the tube voltage was set higher. The higher the sensitivity, the more the underflow and overflow occurred in which the amount of information on both ends of the histogram was lost. In conclusion, the deterioration in the performance of the detector was found to be insufficient to realize the change of the tube voltage and sensitivity when using the Automatic Exposure Control, and it is useful to use dynamic step wedge and histogram in evaluating detector performance evaluation.

A Study on the Quantitative Analysis Method through the Absorbed Dose and the Histogram in the Performance Evaluation of the Detector according to the Sensitivity Change of Auto Exposure Control(AEC) in DR(Digital Radiography) (DR(Digital Radiography)에서 자동노출제어장치의 감도변화에 따른 검출기 성능평가 시 흡수선량과 히스토그램을 통한 정량적 분석방법에 관한 연구)

  • Hwang, Jun-Ho;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.232-240
    • /
    • 2018
  • This study is to suggest a method to evaluate the detector performance using change of absorbed dose and histogram according to sensitivity change of Auto Exposure Control(AEC). The experiment site is skull, abdomen pelvis and the accuracy of the detector was evaluated by measuring the absorbed dose of the detector sensitivity S200, S400, S800, S1000. Also the dynamic range of the detector was evaluated through the histogram analysis. As a result, the absorbed dose decreased gradually as the sensitivity was set higher from S200 to S1000. And through the sensitivity histogram analysis, as the sensitivity of the skull is set higher, the amount of information at both ends of the histogram is lost. Abdomen and pelvis areas showed underflow phenomena in which the amount of information in the first part of the histogram was lost as the sensitivity was set higher. In conclusion, the detector accurately implemented the sensitivity change, but the dynamic range of the image due to the sensitivity change of the AEC due to the deterioration of the detector performance can not be realized properly and it was found that the evaluation through the absorbed dose and the histogram is useful when evaluating the performance of the detector.

Link-layer Assisted Seamless Media Streaming over Mobile IP-enabled Wireless LAN (Mobile IP 지원 무선 랜 상에서 링크 계층의 지원을 통한 연속적인 미디어 스트리밍)

  • Lee, Chul-Ho;Lee, Dong-Wook;Kim, Jong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.626-636
    • /
    • 2009
  • In Mobile IP-enabled wireless LAN (WLAN), packet flows are corrupted due to the handoff of a mobile node (MN) at the link and network layers, which results in burst packet losses and can cause temporary buffer underflow in a streaming client at the MN. This transient behavior hurts time-sensitive streaming media applications severely. Among many suggestions to address this handoff problem, few studies are concerned with empirical issues regarding the practical validation of handoff options on the time-sensitive streaming media applications. In this paper, targeting seamless streaming over Mobile IP-enabled WLAN, we introduce a seamless media streaming framework that estimates accurate pre-buffering level to compensate the handoff latency. In addition, we propose a link-layer (L2) assisted seamless media streaming system as a preliminary version of this framework. The proposed system is designed to reduce the handoff latency and to overcome the playback disruption from an implementation viewpoint. A packet buffering and forwarding mechanism with L2 trigger is implemented to reduce the handoff latency and to eliminate burst packet losses generated during the handoff. A pre-buffering adjustment is also performed to compensate the handoff latency. The experimental results show that the proposed approach eliminates packet losses during the handoff and thus verify the feasibility of seamless media streaming over Mobile IP-enabled WLAN.